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ABSTRACT

Using high-frequency transaction-level data from an online retail store, we examine whether con-

sumer choices on the internet are consistent with models of limited attention. We test whether con-

sumers are more likely to buy products that receive a saliency shock when they are recommended by

new products. To identify the saliency effect, we rely on i) the timing of new product arrivals, ii) the

fact that new products are per se highly salient upon arrival, drawing more attention and iii) regional

variation in the composition of recommendation sets. We find a sharp and robust 6% increase in the

aggregate sales of existing products after they are recommended by a new product. To structurally

disentangle the effect of saliency on a consumer’s consideration and choice decision, we use data on

individual transactions to estimate a probabilistic choice set model. We find that the saliency effect

is driven largely by an expansion of consumers’ consideration sets.
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1 INTRODUCTION

A standard simplifying assumption about consumer behaviour is that consumers consider all

alternatives when making choices. However, exercising choice requires awareness of all avail-

able options which may be limited by search costs or by cognitive overload over the number

and variety of products available to a consumer (?; ?). Many e-commerce websites offer thou-

sands of products for sale even within narrowly defined sub-categories. For instance, Amazon

offers more than 3,000 options for buying a television. Further narrowing of search in this

category produces at least 190 options.1

A growing literature on the nature of consumer search on the internet has documented that

despite the low physical search costs associated with internet browsing, there appears to be

a prevalence of search frictions due to a scarcity of attention towards the large variety of

available choices (?). In the face of very large choice sets in these settings, it is plausible

that consumers may try to simplify decisions by examining a smaller set of products (?); for

example, ? report that consumers typically only search for 11% of all available options (for

camcorders) on Amazon. Experimental evidence too, confirms that limits to attention impose

a bottleneck on processing stimuli (?).

In view of this, many online marketplaces frequently engage in tactics to attract user attention

towards their products. ? show that marketing devices, employed by firms, are likely to in-

fluence the set of products that a consumer chooses to consider, termed her consideration set.

? confirm this empirically, and find that consumer consideration sets respond to actions by

firms that increase the visibility or salience of products.2 One such tool, the product recom-

mendation system,3 through which a subset of products are selectively highlighted to users, is

increasingly used by firms to attract attention and increase awareness towards products (?).

Yet, field evidence on the effectiveness of such recommendations, and indeed how they affect

consumer choice, is limited. A small body of experimental studies in the laboratory find that

subjects who receive recommendations for a product are more likely to select it relative to

those who do not receive them (?; ?). ? use aggregate product search data from Amazon

and find in a policy simulation that a recommendation system, highlighting popular products,

significantly affects their demand and lowers search costs.

In this paper, we examine whether consumer choice online is influenced by impersonal prod-

uct recommendations. To investigate the question, we use data on shopping purchases from

an exclusively online retail store, which offers a list of product recommendations for every

product available on the website; these recommendations are not personalized and instead

based largely on attribute similarity. We focus on two objectives: the first is to provide causal

1The applied search filters are: Home Entertainment, 50-59 inches, 1080p resolutions, flat screen.
2A situation where firms can influence the attention process by sending signals to consumers is commonly

referred to as ‘stimulus-driven’ attention allocation in contrast to ‘rational inattention’, where (only) consumers
choose and optimize resources for the allocation of their attention. The effect of visibility on consumer behavior
is also known as the ‘mere exposure effect’ in the psychology literature (?).

3Product recommendation systems typically use a ‘collaborative-filtering’ technology that chooses items for
recommendations based on similarity measures between users and/or items (?).
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evidence on the the extent to which recommendations affect aggregate product sales, indepen-

dent of product popularity or underlying characteristics. Our second objective is to examine

whether the saliency effect generated by product recommendations limits consumer attention

to a smaller consideration or evoked set. To do so, we estimate a reduced form model of

consumer choice that allows us to determine the causal effect of product recommendations

on sales. To establish that the effect is driven by the impact of saliency on consideration sets,

we estimate a random utility model that incorporates the formation of a consideration set in

the first stage of a consumers’ decision making process and test whether saliency generated

by product recommendations affects both the formation of this set and the consequent choice.

Our identification strategy focuses on product recommendations coming from the arrival of

new products. Since new products are highly viewed upon arrival, we are able to focus on the

aspect of product saliency, that is, the prominence of a product in a consumer’s mind. Specif-

ically, we analyze what happens to the sales of an existing product after it is recommended

by new products. Since new products are highly salient, the recommended existing product

receives a positive “saliency shock.” We exploit both the timing of new product arrivals, which

highlight a set of similar products already available on the website (the recommendation set),

and regional variation between Europe and North America in recommendation sets to identify

our saliency effect. Our double difference-in-difference strategy allows us to difference out

both product-by-time and region-by-time unobservables. In addition we are able to employ

new-product fixed effects to absorb any possible correlation between characteristics of new

products and the products they recommend, ensuring that these saliency shocks are treated

as exogenous with respect to the individual existing recommended products.

There is, by now, a large literature on the effect of salience measured via product popularity

on sales (see for example, ?, ?, ? and ?).4 However, such evidence cannot rule out the possi-

bility that the visibility of such goods actually imparts information. The effect of being on the

first page or being popular also captures latent product quality or price-based relevance. Our

approach differs from the existing literature as we focus on the effect of saliency shocks gen-

erated by recommendations from new product arrivals. The saliency of new products is useful

because it generates a “spillover saliency” effect for existing products that are recommended

by the new product. Our identification strategy, therefore, allows us to distinguish between

pure saliency and information/popularity effects.

Our results indicate a sharp and robust 6% increase in sales of products after they receive a

saliency shock. This saliency effect is short-lived, with the majority of the effect concentrated

around the day that the product receives the saliency shock, diminishing rapidly thereafter.

The effect completely disappears three days after the saliency shock has been received when

4? examine the online purchase of books and find that being among the first few entries or on the first page
on a search list is more important than being the first entry. ? show that on-screen placement of a link, based on
its pricing, on an online search page is a central determinant of the number of clicks. There is also considerable
evidence that salience and limited attention matter in other settings: ? show that that consumers underreact to
taxes that are not salient. ? provides a comprehensive review of the literature examining saliency and limited
attention.
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the next batch of new products is launched on the platform. Such a pattern of effects, with

a prominent spike in a product’s sales on the day that they are recommended, is consistent

with the “attention” based explanation that products receiving a saliency shock have been

previously overlooked by consumers. The lack of persistent long-term effects on sales is in

fact incompatible with selection-based explanations which would imply that recommended

products would have experienced an increase in sales regardless of the recommendation.5

Further, we find that the saliency effect is larger for products recommended in smaller sets,

suggesting that consumers pay attention to products that are more visible. We also find signif-

icant (positive) spillover effects. Products recommended by saliency-shock-affected products

also see an increase in their sales on the day that new products are launched, but to a much

lesser extent.

Although our reduced form results show that recommendations have a sizeable causal impact

on sales, it is unclear how this effect is derived from a consumer’s choice process. Products

that gain saliency are likely to receive more attention by consumers, in this way increasing

the probability that they are considered (?). Even then, it is possible that, independent of in-

creased attention, consumers derive utility from saliency i.e, they have a direct preference for

products recommended by new products.6 Therefore, in order to understand how consumer

demand is affected by recommendations, we estimate a random utility model that incorpo-

rates the formation of a consideration set in the first stage of a consumers’ decision making

process. ? provide theoretical underpinnings for the formulation of such types of stochastic

consideration sets and show that the consideration probability can be interpreted as an at-

tention parameter, indirectly measuring the degree of product awareness. Our consideration

set model, based on ?, recognizes the choice process as sequential and allows for heteroge-

nous consideration sets across individuals. In this way, we are able to distinguish between

a consumer’s consideration for the product due to saliency and her preference for saliency

itself. Our model also avoids the Independence of Irrelevant Alternatives (IIA) assumption

and accommodates the feature of choice frequency reversal due to the addition or elimination

of other alternatives. Note that we do not however explicitly model the consumer search pro-

cess, as is done, for example, in ? and ? and thus are unable to draw conclusions about how

recommendations may affect search.7

Using micro-data on shopping transactions we find that saliency has a strong, positive ef-

5All our specifications include (panel) leads on the saliency shock variable, as well as their cumulative pre-
saliency status, to mitigate the concern of anticipation effects. Our results consistently show insignificant effects
for the included leads. In addition, our alternative identification strategy, which exploits regional variation in the
composition of recommendation sets, relies only on a common trends assumption between a recommended and
non-recommended product for the same new product. We show that this assumption is empirically validated in our
data.

6For example, it is possible that all products linked to a new product are considered “trendy.” To the extent that
consumers have a direct preference over consuming products that are in line with the current trend, our proxy for
saliency will enter a consumer’s utility function.

7We lack data on consumer specific search over different products to be able to explicitly feature search in our
framework. In general, consumers may face heterogenous search costs that are fixed across all products (?) or
vary by product (?), but our consideration stage specification is agnostic about this. In this sense, our results for
the consideration effect can be viewed as a mixture of increasing awareness and lowering search costs.
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fect on the consideration (of existing products) but no further effect on choice, conditional

on consideration. We estimate that the saliency effect is higher within sub-categories where

only a few choices are considered. Based on our model estimates we present counterfactu-

als that compare how sales shares for products change when consumers have limited vs full

information. Our results indicate that under the current recommendation system, where all

products tend to be equally highlighted, popular products tend to suffer a loss in sales share

when consumers have limited attention simply because they are not considered. Popular

products would, however, stand to gain under limited attention (by up to 4% of sales share

difference), if the website only recommended popular products, but this increases the con-

centration of sales towards popular products in the market. These results are consistent with

a “segmentation effect” of improved within-platform search (through for example, recom-

mendation systems) that shifts market participation in favor of some products against others,

identified theoretically by ?.

There is some existing empirical evidence to support models of limited attention through the

formation of consideration sets. A large literature, mainly in marketing science, uses explicit

structural or functional form restrictions to model the formation of consideration sets and

its subsequent effect on choice (see for example ?; ?; ?; ?). A small but growing literature

in economics uses exclusion restrictions to estimate a consumer demand model with limited

attention. For example, ? uses advertising expenditure, proxied by media exposure, as an

exogenous shifter that affects a consumer’s consideration but not her utility. ? do not impose

such a restriction on advertising but treat it as fully exogenous and assume that the consumer’s

choice set is limited to only the set of brands that she is aware of. ? propose an alternative

methodology that uses product availability as an exclusion restriction to test for attention.8

Our methodological approach is similar in spirit but we exploit a richer context, incorporating

not just the availability of new products but also variation in product visibility, to identify and

estimate the presence of consumer inattention. Additionally, in contrast to some of the existing

literature, our paper does not require product saliency, a form of advertising, to be exclusive

to the consideration process and allow it to affect consumer utility. Neither do we place any

restrictions on the composition of the consideration sets or the process of choice formation.

Finally, instead of relying on aggregate proxies, we use a direct measure of product visibility

and salience shocks that vary frequently both across products and over time.

Our research contributes to two important literatures. First, our paper contributes to the

fast-growing literature on the economics of digitization that analyzes consumer behavior on

the internet by offering evidence on the effect of online recommendation systems. To the

best of our knowledge, our paper is the first to do so. Choosing amongst the entire range

of products offered by e-commerce can often be challenging for any consumer shopping on

the internet, and recommendation systems offer a possible way to alleviate this friction. We

also contribute to the field of behavioural economics and the literature on the economics of
8? provide an application using stock-outs, but they do not take into account the endogeneity of product

stock-outs.
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attention by offering empirical evidence that choice sets are limited by bounded rationality

even in an online setting where search costs are minimized.

The remainder of this paper is organized as follows. Sections 2 and 3 describe the setting and

data used in our analysis, respectively. Section 4 presents our empirical approach to identify

saliency effects in the data. Sections 5 & 6 present our results and Section 7 offers a few

concluding remarks.

2 DESCRIPTION OF ONLINE MARKET

We use data from an online luxury fashion retailer, Net-a-Porter, selling top fashion brands

such as Burberry, Dolce & Gabbana, Gucci and Dior. Founded in 2000, Net-a-Porter sells

fashion, shoes and accessories to 170 countries.9 The company sells almost exclusively to

women, the majority of whom have a graduate degree, and claims that its average consumer

has an (annual) household income of $170,000 and expenditure on fashion is $13,000. It

claims 6 million unique users worldwide every month, with a third in the U.S. and 40% in the

UK and the rest of Europe, with an average value of an order at $500. The website is highly

successful, with a bounce rate of 34.8% in 2015 and an average of slightly over 6 page views

per visitor.10

Net-a-Porter is widely considered to have revolutionised retailing luxury fashion because from

a customer’s perspective it does away with the experience of shopping in an exclusive store

and from the fashion label’s point of view it dispensed with the need for expensive retail

stores. To achieve this, Net-a-Porter undertakes efforts to raise confidence and reduce the risk

in only luxury shopping by offering extensive product views (including videos, measurements

of products and detailed product description), careful distilling of trends, and an efficient

global courier delivery system, with 24 hour delivery service in London and New York.

There are three points about this retailer that make it a useful setting for examining consumer

choice. The first is that the website provides recommendations for every product which are

non-personalised. This is ideal for our analysis as we are able to avoid dealing with a large

amount of consumer heterogeneity present in most personalised recommendation systems.

Second, the only other information provided on each product page, in addition to recommen-

dations, are product attributes (image, price, description, dimensions etc). Importantly, the

information does not include any signal on the underlying popularity of the product through

reviews or sales-rank or any such instruments. This ensures that users are not choosing prod-

ucts based on their popularity on the web-site as such information is absent. Finally, the

concept of the web-site is innovative, marrying both content and commerce, enabling it to

9It was founded in 2000 as a small start-up and is now part of Richemont, a Swiss-based luxury conglomerate,
which bought a 93% stake in 2010. Net-a-Porter had sales of Eur 550m last year and is now worth Eur 2.5 billion,
roughly six times its value when Richemont invested in it.

10The bounce rate is the percentage of users that arrive on the website and leave without viewing a second page
on the site. Net-a-Porter’s bounce rate is comparable to that of other highly successful online luxury retailers such
as Neiman Marcus or Mytheresa. Data from www.alexa.com.
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attract a large volume of customers. In brief, the site allows us to examine choice across

more than 15,000 products and 530 brands, in a setting where consumers are largely fully

informed about product and brand attributes including prices and product recommendations

are not tailored towards individual customers.

3 DATA

The data were obtained from the Net-a-Porter website between May and August 2014. The

main dependent variable that we use consists of information on additions to the shopping

bag and wishlists by anonymous buyers which provides information on potential sales of

products.11 The data consists of several components:

Products: We parsed the entire set of available products from Net-a-Porter’s product cata-

logue. The catalogue distinguishes between broad categories: clothing, bags, shoes, acces-

sories, lingerie, sport, and beauty. There are a number of subcategories within the broader

categories (for example dresses, pants, skirts etc. under clothing). The catalogue presents the

products with a number of photos and basic product attributes including the price. Once a

customer clicks on the product, a detailed description appears plus more photos and videos.

Product-level transactions: Net-a-Porter’s online platform includes a feature called Net-a-

Porter “Live” which provides real time data on product sales. The live data feed, updated

every second, allows customers to see how many people around the world (and indeed in

their particular location) are browsing the site with them, and what they are adding to their

shopping bags and wishlists. The transaction-level data used in our analysis comes from

this live ticker. That is, we have product-level information on all items that customers have

added to their wishlists and shopping bags, which includes basic information on product

attributes including brands and prices as well as the precise time when a customer made

these transactions and her physical location. In an informal, confidential discussion with the

representatives from the company, we obtained information on the manner in which these

data are presented and the implications for our analysis. First, while the ticker tape does not

provide data on every potential transaction, it is a random sample of transactions, which is

updated every 8-10 minutes. The main idea here is that viewers of the web page stay on

the page for an average of 3 minutes or less and thus updating the list every 8-10 minutes

allows enough variation. Second, it is possible that some additions to the shopping bag do

not result in actual transactions; however, purchases cannot be completed without adding

11U.S. and U.K. regulations identify several research categories that are considered exempt from Institutional
Review Board oversight (see Office for Human Research Protections (January 15, 2009). "Code of Federal Reg-
ulations". hhs.gov. p. US 45 CFR 46.101. Also see http://www.research-integrity.admin.cam.ac.uk/research-
ethics/guidance). Research involving the analysis of existing data and other materials if they are already publicly
available, or where the data can be collected such that individual subjects cannot be identified in any way is not
subject to such oversight. In our case, we have no information on individual buyers and the data used in our
analysis are publicly visible information on the Net-a-Porter website. Hence, our analysis and all reported results
do not reveal any information on individual users. Neither do we reveal any specific statistics on prices, character-
istics, or shopping bag/wishlist additions of individual products or aggregate data on total shopping bag/wishlist
additions across product groups or the entire website.
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to the shopping bag. In brief, we have a random sample of potential purchases in these

data. We interpret additions to a customer’s shopping bag as a serious intention to buy the

corresponding product (hence we refer to it as sales), whereas additions to the wishlist are

interpreted as an intention to buy. While these transaction-level data are available per minute,

we aggregate the data to daily intervals.12 Table 1 summarizes the data from the live ticker.

The table distinguishes between existing and new products (see next bullet point) as well as

among products that are recommended by a new product and those that are not.

New products: Net-a-Porter launches new products three times a week: on Monday, Wednes-

day, and Friday. We identify all new products from the “What’s New” category on Net-a-

Porter’s website, which lists all new arrivals. Supply factors largely determine the timing of

these launches. Products are launched on the website as and when they are released by the

product’s producer to Net-a-Porter’s warehouses.

Product recommendations “you may also like” (substitutes): In addition to detailed in-

formation on a given product, the customer is also provided with product recommendations

under the you may also like header – see Figure 1. The products under the you may also like

header form the recommendation sets used in our analysis. These are products that are very

similar to the target product, they usually belong to the same product category (in our sample

99% of recommended products are in the same category as their recommending new products

– see Table 2), a similar price range (the average price difference between recommended and

new recommending products in our sample is close to zero – see Table 2), but not necessarily

the same brand/designer (see Table 2). The number of recommended products differs by

product. Unlike standard models of product referrals, such as Amazon, Net-a-Porter’s recom-

mended sets are not personalised (as in “if you like this, you will also like”) and are simply

potential substitutes (see Section 5.1 for more details).13

In conversations with Net-a-Porter we learned that substitutes are chosen through a combi-

nation of two tools: one that selects visually similar products14 and another one that selects

products with similar observable attributes. However, no attempt is made to customize the

recommendation sets based on some (subjective) perception of product popularity. We also

confirmed in our conversations with Net-a-Porter that recommendations are not chosen based

on past or expected sales of either the recommending or recommended products. According

12There are three main reasons for aggregating at the daily-level even though the aggregation entails a loss
of information. First, the major source of variation for our variable of interest, saliency shock, is at the daily
level. As such the additional information contained at a lower level of aggregation is not particulary useful for our
purposes. Secondly, minute level transaction data are highly volatile and our aggregation scheme enables us to
reduce the impact of non-relevant microstructure effects that induce noise. Finally, daily aggregation reduces the
amount of data used for analysis, allowing us to compute our estimates more efficiently. To put further structure
on the level of our aggregation, in section 4.1.1, we specify the distribution of the daily transaction volume as a
poisson process. Our dependent variable therefore, counts the number of times a shopping event has occurred
during a daily time interval.

13The sets are not personalised because the aim of the company is to create a shopping experience akin to
browsing a fashion magazine or shopping in a physical store. More recently, Net-a-Porter has created apps that
allow targeting specific audiences through interaction on social media networks. However, our data pre-date this.

14The Guardian, in a recent article labels the technology used here as “world-class image recognition technol-
ogy”, see http://www.theguardian.com/media-network/2015/may/14/net-a-porter-fashion-digital-revolution
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to them, the goal of providing recommendations is mainly to suggest similar products (substi-

tutes), similar to what a customer would experience in a brick and mortar fashion boutique.

Regional variation in recommendation sets: It turns out that there is some small variation in

recommended sets across regions which we exploit in our empirical analysis (see Section

4.1.2). That is, in a few cases, the same new product recommends slightly different sets of

products in different regions, say the U.S. and Europe. According to Net-a-Porter this is the

result of the attribute matching tool placing different weights on a product’s attributes in at-

tempts to accommodate taste differences across regions. These product- and region-specific

taste differences, termed as ‘style’ by the merchandise team,15 concern variation in prefer-

ences for designer labels and fashion type (classic vs contemporary etc.) and are fixed over a

product’s life-cycle. This means that any observed differences between recommendation sets

across regions are due to region-specific market characteristics rather than product-specific

demand trends.

Product recommendations “how to wear it” (complements): The website offers also prod-

uct recommendations under a how to wear it header. These recommendations are products

that can be worn in combination with the target product. Hence, usually these are products

from other product categories (for example if the target product is a dress, how to wear it

might show shoes, a bag, and earrings). As such we consider these products as complements

as opposed to substitutes under the you may also like header.

International dimension: Net-a-Porter splits its offer into three geographical areas: the

Americas (which includes the U.S.), International (which includes Europe), and Asia and the

Pacific (which includes India and China). Part of our analysis relies on variation in the sets of

recommended products across these areas (see Figure 2). To obtain the data for the Americas

and Europe, we parsed the data from locations in the U.S. and the UK. Since the live ticker

provides us with the location of customers, we can determine which set of recommended

products a given customer in a given region was able to see.

4 REDUCED FORM EMPIRICAL SPECIFICATION AND IDENTIFICATION

To establish the relationship between product saliency, through recommendations, and de-

mand we begin by laying out a reduced form specification linking product sales to their

saliency. Later in section 6 we provide more structure to the reduced form effects, by test-

ing whether recommendations impact sales by expanding consumer consideration sets, that

ultimately affect their demand for the product. Before doing that however, we use the re-

duced form specification to describe and motivate our identification strategy for consistently

estimating the causal effect of saliency. The effect of product saliency on its aggregate sales

can be written as:
15The company distinguishes between fixed effects of location, named style and time-varying trends, which are

thought to be the same across locations. We were told explicitly that recommendation sets are not designed as per
trend.
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y j t = α+ψs j t + ε j t (4.1)

The dependent variable, y j t is the total number of shopping bag or wishlist additions for

product j during calender day t. Our main variable of interest is product saliency, s j t , This

variable is defined as follows: We denote s jkt as an indicator for whether product j is included

in the set of recommended products for a product k. We then sum this variable over the set of

all products in the catalogue at date t giving us, s j t =
∑

k,k 6= j s jkt . The variable s j t measures

the intensity of saliency for an existing product j. The coefficient ψ measures the total impact

of saliency on product demand and captures both the consideration and choice probability.

Least squares estimation of this equation will however produce a biased estimate of parame-

ter ψ if products appearing in recommendation sets are endogenously selected. This occurs,

for example, if products that have experienced high demand are targeted specifically through

recommendations, or when similar cheaper products are systematically recommended as sub-

stitutes. Take for example the case of a best-selling handbag . An endogeneity problem would

emerge if the retailer wants to draw attention to its popularity by recommending it frequently

with other products in the same-category. In this case, the saliency parameter, ψ, would

be upward-biased as a result of the positive correlation between unobserved popularity and

the frequency of recommendation. The next section explains how we address the potential

endogeneity issue.

4.1 SOURCES OF IDENTIFICATION

4.1.1 NEW PRODUCT ARRIVAL SHOCKS

To consistently estimate the effect of saliency we use identifying variation from the arrival

of new products and their impact on existing products. Our identification strategy exploits

two features of new products. First, new products are more salient on behalf of their novelty.

Dedicated web-links and email based advertising to announce the arrival of these products

increases their popularity at the time of their arrival. Second, most new products recommend

other products that have already existed on the website but have not been recommended in

these sets before. The in-stock products have a demand history that allows us to control for

their latent popularity, thereby eliminating potential selection bias based on past sales.

We therefore make use of the spillover effects of the increased popularity of new products on

the set of existing products that get recommended alongside them. We treat the arrival of new

products as shocks to to existing products’ saliency and use this to identify the saliency effect.

In order to do this, we define the set of new products at every launch date as S. We denote

bsN
jnt as an indicator for whether product j is included in the set of recommended products for

a new product n (where n ∈ S) launched at date t. We then sum this variable over the set

of all possible new products launched at date t giving us, bsN
jt =
∑

n∈S, j 6= j s jnt . The treatment

variable bsN
jt measures the intensity of saliency for an existing product j due to the arrival shock
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of new products at time t.

y j t = α+
Γ
∑

λ=−τ
ψτ−λbs

N
j(τ−λ)+µ j + γt + ε j t (4.2)

We use a finite distributed lag model to estimate our model allowing saliency effects on prod-

uct demand to last up to Γ days. For each date, we measure the length of the non-overlapping

effect window λ by the number of days preceding the arrival shock to the number of days

following the arrival shock. The reason for including leads on the treatment variables is to

mitigate concerns about potential selection bias due to anticipation effects, if top (or low)

selling existing products are endogenously chosen to be part of recommendation sets. We in-

clude product fixed effects µ j to absorb product specific heterogeneity. We also accommodate

different time trends in product demand by incorporating calender day fixed effects.

To estimate Equation 4.2, we use a fixed effect poisson model, as our dependent variable –

the daily count of total shopping bag or wish-list additions – follows a poisson distribution.16

Denote the vector of all explanatory variables by xjt and the vector of all coefficients as Φ.

In a fixed effect specification, the conditional likelihood is conditioned on the sum of the

outcomes over the product-specific panel dimension (T j) (?). For inference, we use cluster-

robust standard errors, where each cluster is a product, to account for product specific serial

correlation in ε j t using the formula derived in ?.

4.1.2 REGIONAL VARIATION IN RECOMMENDATION SETS

To further strengthen our identification strategy, in addition to employing product arrival

shocks, we exploit regional variation in recommendation sets. One concern with our previ-

ously described specification is that new products and products that they recommend share

some correlated attributes. If the attributes that make a new product sell well are correlated

with the attributes that determine which existing product are recommended, then those ex-

isting products will also sell well post the introduction of the new product, not because of the

recommendation but because of the shared attributes. Even though we control for the past

sales record of each recommended product in the previous specification, we further strengthen

our identification to resolve the issue of correlated effects by exploiting regional variations in

the composition of recommendation sets. This allows us to include a new product fixed ef-

fect and absorb all sales-enhancing correlated effects. In addition the strategy allows us to

difference out product-by-time unobservable characteristics.

As explained in Section 3, Net-a-Porter provides different recommendation sets across regions

16As noted before, we specify the distribution of the daily transaction volume as a poisson process deriving from
the underlying second-level transaction generating data. Our dependent variable counts the number of times a
product has been added to the shopping basket or wishlist during a daily time interval. We assume implicitly that
this is a process with independent increments – this is a justifiable assumption given that the website does not
display product-specific shopping trends (cumulative or daily) and that the customers shopping on this website
are not explicitly related in any way and are unable to fully observe each other’s purchases.
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for a few products . These differences are a result of regional taste differences that are specific

to a product but do not vary over its life-cycle. With that in mind, we decompose the region-

specific residual (for each region R), εR
jt into the following components:

εR
jt =ω j t +µ

R
j +υ

R
jt (4.3)

whereω j t denotes the time-varying product specific unobservables that are common across all

regions, µR
j is the time-invariant product specific unobservable that differs across regions and

υR
jt is the time-varying product specific unobservable that differs across regions. For example,

in our set-up, µR
j captures fixed regional differences in preferences for each product while υR

jt

captures the differential shift in these preferences.

We now describe how, the regional variation in recommendation sets for the same new prod-

uct allows us to difference out the relevant components of the overall residual. To begin with,

we normalize our time variable to event-time days and restrict our analysis to -3/+3 days of

product j receiving the saliency shock (day 0). We consider the two regions in which most of

the transactions occur - America and Europe - and introduce an additional subscript n which

indexes the overall product recommendation set associated with a new product. Therefore

yR
jnt is the total shopping bag additions for product j recommended by new product n at time

t in region R. For each region, we define the treatment variable, bTR
jn, as an indicator taking the

value one if product j was recommended by new product n in region R. Post t is an indicator

for the time period following the saliency shock i.e. day 0 to day 3.

yAMR
jnt = β1bT

AMR
jn + β2(T

AMR
jn × Post t) +µ j + γt +ω jnt +µ

AMR
in +υAMR

jnt
︸ ︷︷ ︸

(4.4)

y EUR
jnt = β1T EUR

jn + β2(T
EUR
jn × Post t) +µ j + γt +ω jnt +µ

EUR
jn +υEUR

jnt
︸ ︷︷ ︸

(4.5)

Now, we can net out the time-varying product specific unobservables that are potentially

correlated with a product receiving a saliency shock by taking a difference of Equations (4.4-

4.5):

y?jnt = β1T ?jn+ β2(T
?
jn× Post t) +µ

?
jn+υ

?
jnt

︸ ︷︷ ︸

(4.6)

where y?jnt denotes the difference in demand between America and Europe for product j rec-

ommended by new product n at time t. Similarly, T ?jn denotes the difference in treatment

status of product j, i.e. whether it is recommended by new product n, between America and

Europe. Note that our differencing strategy is, implicitly, only relevant for products that were

exclusively recommended in either of the two regions; as a result we discard all products that

were recommended both in America and Europe. For ease of interpretation, we also recode

the variable, T ? to take the value 0 if the product was recommended in Europe but not in
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America (instead of -1 as the differencing suggests).

It is easy to see that first-differencing equation 4.6 allows us to absorb the time-invariant

regional unobservables for each product j, µ?jn, that are crucial in determining the allocation

of products to different sets across regions . Further, to deal with the issue of correlated

attributes between the new and recommending product we rely on the within (new) product

regional variation in recommendation sets. We include, in the differenced equation, a fixed

effect (Bn) for each new product n that recommends different products in different regions:

∆y?jnt = β2∆(T
?
jn× Post t) +Bn+∆υ

?
jnt (4.7)

Including the fixed effect acts as a synthetic control (?), allowing us to compare the demand

differential between product j and product k that are recommended by the same new product

n but in different regions. Our identifying assumption for the difference-in-difference specifi-

cation is that conditional on being recommended for the same product, product j and product

k experience similar trends in product sales before being recommended by the new product.17

In section 5.6 we empirically test this common trends assumption and show that it is validated

in our data.

5 RESULTS: IMPACT OF SALIENCY ON AGGREGATE SALES

5.1 IDENTIFYING CONDITIONS

Our identification strategy rests on two assumptions that we can test empirically. First, our

strategy requires that new products produce saliency shocks for recommended products. To

show that new products are themselves highly salient, Figure 4 plots the novelty effect for

new products. The figure shows that new products are highly popular upon arrival and this

effect declines over the week. The largest effects are observed over the first four days with

the effect tapering off by the sixth day following the arrival. The figure suggests that new

products attract an enormous amount of consumer attention and demand immediately when

they are launched on the platform.

Second, our empirical approach relies on the fact that recommendation sets for new products

are not endogenously selected (although we relax this assumption when we exploit regional

differences in recommendation sets). To investigate this assumption in the data with regard

to observable product characteristics, Table 3 shows average prices for recommended (by new

products) and non-recommended products across the different product categories. On aver-

age, we do not find any significant differences at reasonable levels of statistical significance.

We also test whether products that are recommended by new products are subject to differ-

ent demand prior to being recommended. Figure 3 shows the empirical distribution of the

17For instance, a concern could be that products chosen for recommendation in the U.S. started to experience a
higher sales trend, before being recommended, compared to a non-recommended product in Europe.
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difference in shopping bag additions during a 3, 5, and 7 day time period prior to being rec-

ommended by a new product and shopping bag additions during the same time period of all

other products.18 We compute these differences comparing all products (upper graph) and

comparing only products within product categories (lower graph). The red colors show that in

the overwhelming majority of cases there are no statistical differences in demand for products

that are recommended subsequently (3, 5, or 7 days later) by a new product and all other

products. Note that while our basic results rely on this conditional independence assump-

tion, our estimations that use differences in recommendation sets across regions difference

out product-by-time unobservables.

5.2 BASELINE SPECIFICATION

For all our specifications and results, we refer to “saliency” for product j as the number of new

products recommending this product at any given point in time. Table 5 reports estimates for

the average effect of saliency on total shopping bag additions on the day it received the shock.

First we discuss estimates for the effect of a product being new. Column (1) shows that,

upon arrival, new products have on average 96% more shopping bag additions compared to

existing products. This confirms our assumption that new products are highly popular and

are likely to generate spillover effects from their popularity. We now examine the effect of

being recommended by a new product (see Table 4 for descriptive statistics). Column (1)

shows that a one unit increase in saliency, i.e. an additional new product recommendation,

increases the total number of shopping bag additions by approximately 6%. To incorporate

potential anticipation effects we include the forward lag of saliency in Column (2) and find

that our results are still robust to this addition. Further, the coefficient on the forward lag is

negative but statistically insignificant suggesting that products exposed to a saliency shock did

not experience a differential demand trend prior to receiving the saliency shock. In Column

(3) we split the saliency effect between existing products and new products. As described in

the data section, new products recommended a mix of existing and (other) new products. We

find that the effect of saliency is large and significant for existing products which see a 5.5%

increase in their sales on the day that they are recommended by a new product. However, this

effect is close to zero for new products receiving the saliency shock implying that the novelty

effect dominates the sales of new products upon arrival and that there are no added affects of

recommendations. Finally in Column (4) we control for the lagged effect (up to 2 weeks) of

being a new product addressing the concern that saliency shocks might be picking up lagged

new product effects if it were the case that lagged new products were likely to receive the

saliency shock. We find that our result is robust to including this control and that the saliency

effect is independent of lagged new product effects.

Until now we have focused on the immediate short term effect of a saliency shock. To assess

whether these saliency effects persist over the days following the arrival of the product, we

18Each bar displayed in Figure 3 corresponds to the arrival date of a new product, since only the arrival of a
new product leads to the recommendation of an existing product.
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report results from estimating the finite distributed lag model presented in Equation 4.2.

Figure 5 plots the disaggregated saliency effects for each day following the shock along-with

their confidence intervals. The figure shows a large increase in total purchases for salient

products on the day they receive the saliency shock (6% increase) with the effect positive but

declining over the subsequent few days. On average an additional unit of saliency results in

a 3-5% increase in total purchases over the three days following the shock. Such a pattern of

effects, with a prominent spike in a product’s sales on the day that they are recommended,

is consistent with the “attention” based explanation that products receiving a saliency shock

could have been previously overlooked by consumers. The lack of persistent long-term effects

is incompatible with a selection-based explanation which posits that existing products are

endogenously selected to be part of new product recommendation sets in anticipation of their

(higher) future sales.

In figure 6 we break down the daily effects of saliency for existing and new products. The

results are mixed. Figure 6(a) shows that existing products see a large increase in their sales

on the day that they are recommended by a new product but this effect disappears on day 2,

subsequently picking up again over days 3 and 4. In contrast, we find no effect of saliency for

new products on the day they are launched and recommended by other new products (figure

6(b)) but we find positive and significant effects following the day of the shock. Our results

indicate that while the novelty feature of a new product clearly dominates its sales on the day

of its launch, the saliency effect starts to play a role in increasing its sales once the novelty

effect starts wearing off, over the subsequent few days. This means that new products that

were recommended by other new products are able to maintain a competitive edge in the

days following their launch compared to new products that are not recommended by other

new products.

Since our data also contain information on consumers’ “wishlists,” we undertake the same

analysis with total wishlist additions (per day) as a a dependent variable. Table 6 reports these

results. Although additions to wishlists are more noisy, we find strikingly similar results for

the effect of saliency. Across all specifications we find that a one unit increase in saliency, i.e.,

an additional new product recommendation, increases the total number of wishlist additions

by approximately 6%. This result is robust to controlling for lagged new product effects and

anticipation effects. Further we find strong novelty effects with new products experiencing

almost a 118% increase in wishlist additions compared to existing products. We find close to

zero effects of saliency shocks for new products on the day they receive the shock (Columns

(3) and (4)).

Finally, Figure 13 plots coefficients when we use recommendations of complements (“how to

wear it”) instead of substitutes (“you may also like”). The results are similar to those obtained

for substitutes in Figure 6; focusing on the effect on existing products, we see a significant,

positive effect of the saliency shock on demand on the day of the saliency shock, with the effect

pattering out within the first three days. The fact that the coefficient is smaller in magnitude

than in the case of substitutes is what we would expect if most consumers choose between
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substitutes rather than switching to or adding complements to their shopping bags. The effect

of the saliency shock on other new products shown in the lower plot is much more lasting, we

continue to observe a positive impact up to seven days following the shock.

5.3 ROBUSTNESS

To assess the robustness of our results to lagged novelty effects, we include the two-week lag

of whether a product was new in the baseline specification. Figures 7(a)–7(b) show that the

results, both for existing and new products, are robust to the inclusion of this control. We also

assess whether our results are sensitive to introducing differential anticipation effects between

products that received a saliency shock in the previous week compared to products that did

not. A priori, one might expect that products that received a saliency shock in the previous

week have an upward trending sales curve that makes them more likely to receive another

saliency shock. If this were the case, then we would be picking up lagged saliency effects of

high-selling products, confounding our estimates of current saliency shocks.

Figure 8(a) plots the results with the anticipation effects split between products that received

a prior saliency shock and those that did not. We see clearly that there is almost no difference

in the anticipation effects between these two types of products and that the overall effects are

close to zero. Products that received a saliency shock had no differential demand trend 3 days

prior to the event. We conduct the same analysis for total wishlist additions as a dependent

variable. Similar to the results for shopping bag additions, we find that the saliency effects for

consumers’ wishlist additions are robust to controlling for lagged new product effects (Figure

11) and differential anticipation effects (Figure 12). We conclude therefore, that our results

are not affected by including the various controls described above.

5.4 ATTENTION AND PRICE EFFECTS

We now examine heterogeneity in saliency effects across products. The first dimension of het-

erogeneity we explore is in the size of recommendation sets. For each recommended product

j, we compute the display size of the set in which product i was recommended; it equals the

total number of other products that were also recommended alongside product j by a new

product n. The overall size of the recommendation set may matter if consumers have lim-

ited attention and can only focus on a restricted number of products at a time. As a result,

products that are recommended in smaller sets may receive more attention, increasing their

sales, compared to products recommended in larger sets. To test the display size effect, we

include an interaction of the saliency shock to product j and size of the set in which it was

recommended. Figure 9 shows results from this specification. We find substantial, negative

and significant, display size effects. An additional product in the recommendation set reduces

total purchases by 4%. To gauge the magnitude of this effect, we note that the average size of

the recommendation set in our sample is 7.5. On average, therefore, products recommended
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with 7 other products see an increase in their sales by about 6%, similar to the results found

in our baseline specification. The maximum effect of saliency is experienced by products

recommended in sets of 1-3.

We now turn to exploring the price sensitivity of salient products. To examine this, we interact

the saliency shock with the difference in price between product j and the new product n

which recommends it. Our null hypothesis is that consumers are less likely to respond to

price differences if product recommendations serve only to improve the saliency of a product,

thereby drawing consumers’ attention. Figure 10 plots the results of the interactions. We fail

to reject the null for the interaction effects both on the day of the shock and subsequently. The

coefficient on the interaction terms is close to zero suggesting that consumers ignore variation

in price differences across recommended products and are influenced only by the number of

other competing products.

5.5 SPILLOVER EFFECTS OF SALIENCY

So far, we have measured the direct effect of a saliency shock on products that are recom-

mended by newly launched products. To the extent that these products also recommend

other products, there could exist substantial spillover effects of the saliency shock that poten-

tially bias our estimates downwards. To explore the presence of spillover effects, we build a

network of recommendations that allow us to vertically trace the impact of the saliency shock,

originating from newly launched products.

We measure, on a given day, the path distance between a product and a new product in the

recommendation network. For example, products that were directly recommended by a new

product have a one degree separation and are identified by the dummy variable, D1. Further,

products that are recommended by degree 1 products have a two degree separation between

themselves and the new product and are identified by the dummy variable, D2. In a similar

way we identify degree 3 products (D3). Note that the variables that identify the degree of

a product are mutually exclusive, in the sense that products are identified by their closest

degree of separation even if they can be recommended recursively through the network.

y j t = α+
Γ
∑

λ=−τ
ψτ−λ(bs

N
j(τ−λ)× D1

j(τ−λ)) +
Γ
∑

λ=−τ
ψτ−λ(bs

N
j(τ−λ)× D2

j(τ−λ))

+
Γ
∑

λ=−τ
ψτ−λ(bs

N
jτ−λ× D3

j(τ−λ)) +µ j + γt + ε j t (5.1)

In this specification, bsN
j(τ−λ) × D1

j(τ−λ) measures the total number of new products recom-

mending product j, i.e., it represents the intensity of saliency for products that are directly

recommended by new products (degree 1). The indirect spillover effects are captured by the

variables bsN
j(τ−λ) × D2

j(τ−λ) and bsN
j(τ−λ) × D3

j(τ−λ). bs
N
j(τ−λ) × D2

j(τ−λ) measures the total number
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of degree 1 products (those directly affected by the saliency shock) recommending product

j for all products at a two degree separation from any new product; bsN
j(τ−λ) × D2

j(τ−λ) mea-

sures the total number of degree 2 products (those indirectly affected by the saliency shock)

recommending product j for all products at a three degree separation from any new product.

Table 7 reports results from including spillover effects. The first row of the table presents our

baseline results, where we do not account for spillover effects. The subsequent rows report

results on both direct and indirect effects of the saliency shock. We find that our baseline

results are largely unchanged by the inclusion of the spillover variables. As expected, there

is a slight increase in the magnitude of the effect, from 7.4% to 8.2%, after accounting for

spillover effects. A comparison of the direct and indirect effects of the saliency shocks reveals

that the effects of the saliency shock are strongest for products recommended directly (at

degree 1 separation) by new products. However we also find significant (positive) spillover

effects. Products recommended by saliency-shock-affected products also see an increase in

their sales on the day that new products are launched, but to a much lesser extent (a 2%

increase). The spillover effects are limited to products at a degree 2 separation from new

products. We find no significant effects for products that are at a three degree separation

from new products.

5.6 EXPLOITING REGIONAL VARIATION IN RECOMMENDATION SETS

We have presented a range of results starting with the baseline specification and extensions in

various directions. Table 8 shows the coefficients of interest for all the different models. The

table highlights how consistent our results are across specifications – we see a large positive

coefficient between 0.74 and 0.82 on the day an existing product receives a saliency shock,

with this positive effect lasting for three days. The table also shows that these findings are

unaffected by accounting for the price difference between recommending and recommended

products. At the same time, we find that the larger the recommendation set, the smaller the

saliency effect. These results paint a consistent picture, suggesting that products that have

been available to consumers on the platform experience a large surge in demand when they

are made more salient through a recommendation by highly salient products.

A concern with all the results presented in Table 8 is that the probability of receiving a saliency

shock has an underlying correlation with future sales. In all our results we have shown that,

on average, products receiving a saliency shock did not experience a differential demand

trend from non-saliency shock products, prior to receiving the shock. In this section, we

employ a tight and robust specification that differences out product-by-time unobservables

and allows us to consistently estimate the saliency effect. As explained in Section 4.1.2, we

exploit regional variation in the composition of recommendation sets to identify the saliency

effect.

To begin with, we conduct a simple placebo test that illustrates our identification strategy.

Figure 14 plots the results for saliency effects from our baseline specification (for existing and
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new products) and additionally reports results from a counterfactual exercise built around re-

gional differences. We construct the counterfactual in the following way: we identify two sets

of products – those receiving a saliency shock in America and those receiving a saliency shock

in Europe. Next, we examine whether products that received a saliency shock exclusively in

Europe, i.e., they were recommended by a new product (which itself was launched globally)

only in Europe, increased in any way their American sales. Since consumers in America are

not able to view these products as salient in their region, we should expect no change in the

products’ American sales if there was a pure saliency/attention effect driving up sales. In-

stead, if there were underlying time varying product trends for salient products, for example

if salient products coincided with fashion trends picked up by their similarity to new products,

then our hypothesis would be rejected and our identification would stand compromised. Fig-

ure 14(c) shows that this is not the case and that products made salient exclusively in Europe

saw no change in their American demand. All effects, short-term and long-term, are close to

zero.

Having described the essence of our identification approach, we now proceed to obtaining

consistent effects for saliency using this strategy. The objective of our exercise is to estimate

treatment effects, described as whether a product is made salient in America, on the sales

differential between America and Europe. In estimating equation 4.7, we obtain estimates

that – conditional on fixed effects for each new product launched globally – are independent

of unobserved i) time-varying product differences, ii) time-invariant regional differences for

each product and iii) time-varying regional differences for each product. Before reporting

the results, we test the pre-event, unconditional difference in the America-Europe sales dif-

ferential and prices of both treatment and control products. Table 9 shows that there are no

statistically significant differences in the price and sales of treatment and control products

before the saliency shock hits. These results suggest that even without conditioning on new

product fixed effects, there are hardly any differences in the characteristics and outcomes

of treated and untreated products. In contrast we find a large and significant difference in

the post-saliency-shock sales of treatment and control products suggesting a positive saliency

effect. In addition we test the common-trends assumption, implicit in our double difference-

in-difference strategy. Figure 15 plots the (predicted)19 difference in sales between America

and Europe on the y-axis and event time on the x-axis. In both the figure and following results

table, we undertake a within new-product comparison. This means we compare products that

receive a saliency shock in America (treatment) by a new product n with a similar product

(control) that is also recommended by n but only in Europe and not in the Americas. While

we estimate equation 4.7 over a daily time interval of {-3. +3} days, the figure is extended to

12 hour (half-day) intervals over the same sample range.20 The figure shows that both control

(plotted in gray) and treatment (plotted in black) products have a declining sales curve but

19We use predicted difference in sales by regressing actual sales differentials on a fixed effect for each new
product recommendation set. This allows us to test the common trends assumption conditional on Bn as required
by our identification strategy.

20Note that since we require information on sales prior to the event, by construction, we are only able to examine
saliency effects for existing products.
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treatment products lie slightly below control products; however this difference is not statis-

tically significant. On the day that treatment products receive their shock in America, their

sales differential increases by a magnitude of almost two in favor of America. Following the

event, the product continues its declining trend but the boost in its sales on the event day puts

its sales curve on a higher level compared to control products reversing the pre-event trend

gap.

Table 10 now reports results from our double difference-in-difference strategy. All columns

condition on new product fixed effects. Column (1) estimates a simple difference-in-difference

equation and retains the base treatment effect to show that the baseline difference between

treatment and control products is statistically insignificant. In Column (2) we estimate the

double difference-in-difference equation 4.7. We find that products recommended by a new

product in America see a 13% increase in their American-Europe sales differential over the

4 event days, compared to similar products recommended exclusively in Europe by the same

new product. The magnitude of the effect is larger than the effect obtained in our baseline

specification. In column (3) we examine whether the treatment effects differ by size of the

recommendation sets. We find a 2.5% decrease in sales differential with the inclusion of an

additional product in the recommendation set. This effect is slightly smaller compared to

what we obtained in our baseline specification but given the differences in the average size of

the recommendation sets between our different samples, we conclude that the effect is largely

similar. Finally, column (4) breaks down the effect by event day. As expected, we find a large,

positive effect on the day of the event (10%) and surprisingly large effects sustained over

the days following the event. In this sample, the effect of the saliency shock is largest (17%

increase in sales differential) on the second day following the event.

6 MECHANISMS AND STRUCTURAL EFFECTS OF SALIENCY ON CONSUMER DEMAND

The reduced-form analysis has shown that a product’s saliency has a positive and significant

effect on its sales. Yet, our results from this analysis cannot distinguish whether this effect

occurs through an increase in a consumers’ consideration for this product or through con-

sumers’ implicit preference for saliency (thereby affecting their choice). Indeed, we have

assumed that the effect of saliency on sales works through consumers’ consideration sets in

order to interpret our results as evidence for limited attention.

In this section, we verify this assumption and estimate the two-stage probabilistic choice multi-

nomial logit model (PCMNL). This approach allows us to test explicitly how saliency affects a

consumer’s consideration and choice and hence whether consumers make choices under lim-

ited attention. We also want to distinguish any such limited attention effect from consumer

preferences for saliency.
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6.1 PROBABILISTIC CHOICE MULTINOMIAL LOGIT MODEL

The difficulty in the literature is distinguishing whether a product is not consumed because

it has no utility to the consumer or whether the consumer is simply unaware of it because

of scarce attention. The latter would imply that consumers do not take into account all the

alternatives available on the website in making their choices but reduce them to a smaller

(manageable) set. A consumer might be able to see all the alternatives available to her but

only evaluates a subset of them, the choice or consideration set, and makes her final choice

by maximising her preferences over this set.

This process is described by ? in his econometric formulation of choice behaviour that allows

for sequential decisions with heterogenous choice sets. ? proposes random utility models of

choice, where choice sets are probabilistic in nature and final choices are conditional on this

choice set. Within this class of model, we adopt the random constraint-based approach of

? where a product is excluded from the choice set if its consideration utility is lower than

some threshold consideration utility level. As described by ?, since this threshold utility level

is not observed by the econometrician, the exclusion of a product from the choice set becomes

probabilistic. Note that in our framework, we do not explicitly model the consumer search

process. In general, consumers may face heterogenous search costs that are fixed across all

products (?) or vary by product (?) but our consideration stage specification is agnostic about

this. In this sense, our results for the consideration effect can be viewed as a mixture of

increasing awareness and lowering search costs. 21.

We consider the probability that alternative j is considered by consumer i at any time t, where

t represents a calender day.22 This probability can be written as:

Ci j t =
1

1+ e−(φ
′wijt+ψ′1s j t )

(6.1)

where wijt is a column vector of observed attributes for user i and alternative j at time t

and φ is a corresponding column vector of coefficients which provide the impact of attributes

on the consideration probability of alternative j. Our variable of interest, product saliency

is captured by s j t which is defined as the number of recommended sets by a new product

that product j appears in at time t of the corresponding new products’ launch. The coeffi-

cient ψ1 measures the impact of saliency on the consideration probability of alternative j. An

important identifying condition that we require for analysis is that, conditional on salience

(and other included attributes, w), the probability of consideration is independent across al-

ternatives. While slightly restrictive, we justify this assumption in our data based on the fact

that all products in each sub-category we analyse are fully substitutable. In addition, apart

21? model all three stages of a consumer’s decision process, awareness, consideration and choice and find that
advertising serves to mainly increase awareness for a product. Their data identifies the list of options considered
by the consumers during their search process.

22Implicitly we make the simplifying assumption that any user i considers purchasing only one unit of a product
per day. This is not, however a restrictive assumption, and we can easily re-write the model in terms of a user
considering to purchase a product at any given fraction of time.
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from saliency, there is very little menu dependence amongst alternatives i.e, each alternative

is presented without any special distinguishing aspects. Allowing for dependence across alter-

natives in unfeasible in our context as it would yield no observable restrictions on the choice

data with which to identify the consideration set as shown by ?.23

The overall probability of a choice set ct at time t for user i is given by:

Pi t(ct) =

∏

j∈ct

Ci j t
∏

k/∈ct

(1− Cikt)

1−
J
∏

j=1
(1− Ci j t)

(6.2)

Note that the denominator is normalized to remove the “empty” choice set. It is also assumed

that the randomly-distributed threshold for each alternative is independent of the threshold

values of other alternatives. Conditional on the choice set, a consumer chooses product j at

time t based on the following multinomial logit formulation, as:

Pi j t |ct =
eβ
′xijt+ψ2s j t

∑

k∈ct

eβ′xikt+ψ2skt
if j ∈ ct (6.3)

= 0 if j /∈ ct (6.4)

where xijt is a column vector of exogenous variables that affect the probability of selecting a

product conditional on a consumers choice set, β is a column vector of associated coefficients

and ψ2 measures the impact of saliency on the choice probability of alternative j conditional

on considering it. Given the conditional choice probability, the unconditional probability of

choice of alternative j can be written as:

Pi j t =
∑

ct∈G

(Pi j t |ct) · Pi t(ct) (6.5)

where G is the set of all non-empty subsets of the comprehensive choice set of all product

alternatives, i.e., it includes each possible choice set, a total of (2I − 1) elements where I is

the total number of products in the market. We estimate the consideration and choice stage

parameters by iterating over all possible sets and maximizing the following log-likelihood

function:

L(φ,ψ1,β,ψ2) =
∑

i

∑

j

yi j t · log Pi j t(φ,ψ1,β,ψ2) (6.6)

where yi j t is a dummy variable taking the value 1 if individual i chooses product j and 0

23? also show that menu dependence would lead to the preference relation being entirely unidentified. They
cite evidence, from different contexts, that support no or weak menu effects.
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otherwise.

We can compute the disaggregate elasticity effects based on ?. We define δi j t as a an indi-

cator for whether the choice set ct contains product j. Then, the probability, Bi j t , that the

individual’s choice set includes product alternative j is:

Bi j t =
∑

ct∈G

δ
ct
i j t Pi t(ct) =

Ci j t

1−
∏

k
(1− Cikt)

(6.7)

Now, consider the impact of attribute si t that appears both at the consideration stage and

choice stage. The overall self-elasticity (probability of choosing product j) and cross-elasticity

(probability of choosing product k) of demand, with respect to the saliency of product j is

given by (?):

η
Pi j t
s j t
=















(1− Bi j t)ψ1
︸ ︷︷ ︸

Consideration

+
1

Pi j t

∑

ct∈G

¦

(Pi j t |ct)(1− Pi j t |ct)Pi t(ct)ψ2

©

︸ ︷︷ ︸

Substitution















s j t (6.8)

ηPikt
s j t
=

























1

Pik

∑

ct∈G

(Pikt |c)P(ct) ·δ
ct
i j t − Bi j t







ψ1

︸ ︷︷ ︸

Consideration

+
1

Pikt

∑

ct∈G

¦

(−Pi j t |ct)(Pikt |ct)Pi t(ct)ψ2

©

︸ ︷︷ ︸

Substitution



















s j t

(6.9)

The first term in both expressions is the consideration probability, which captures the impact

of a change in the attribute on the consideration of product j while the second term represents

the substitution probability at the choice stage conditional on product j being available in the

choice set. The total effect of saliency depends, therefore, on the consideration probability

for product j as well as its ultimate choice probability from amongst a set of considered

alternatives.

In our setting, the probabilities of the choice set Pi t(ct) are described by the random arrival of

new products that in turn highlight (or make salient) a subset of older products, or additions

to the (unobserved) choice set. These salience shocks to the existing full set of alternatives

draw attention to the subset of existing alternatives highlighted by recommendations from

the new arrivals. These shocks are not related to consumers’ attributes, since they are not

personalised. A particular advantage of our approach is that we do not need to know the

exact choice set formulated by consumers but focus on the potential additions to the choice

set created by the increased salience of a subset of products generated by new product arrivals.

Finally note, from the cross-elasticity expressions, that the PCMNL model does not display
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the Independence of Irrelevant Alternatives (IIA) feature of the multinomial/conditional logit

model. The cross-elasticities in the PCMNL model depend on the probability information

for both products j and k. This means that the cross-elasticities will be different across all

alternatives.

6.2 RESULTS: EFFECTS OF SALIENCY ON CONSUMER CONSIDERATION AND CHOICE

To estimate this model, we use transaction-level data on each consumer’s purchase. Apart

from consumer’s geographic location, we do not identify any other consumer attributes. We

thus treat the data as a pooled cross-section as our data does not track individual consumers

over time. We are nevertheless able to identify the time period over which a given consumer

visited the website and made a purchase decision. This allows us to include product level

attributes in our models that vary over time and across consumers, such as saliency and

novelty.

The reduced form analysis indicates that the effects of saliency last for a maximum of 4 days.

Taking this into account, we define the saliency variable as a dummy variable taking the value

one if the product was recommended by a new product at time t and over the 5 days following

it. We define the variable “new product” in a similar way.24

Next in order to make our computation feasible, we estimate our model on a sub-set of data,

i.e., instead of using information on the entire catalogue of products (that contains thousands

of options), we narrow down on a sub-category of products, “Travel Bags”, that contains only

12 options.25 For comparison, and to show that the results are not specific to the chosen prod-

uct category, we also estimate the model for the sub-category “Watches” (with 25 options),

but choosing only the 10 most purchased products that account for over 80% of sales. In

addition to computational feasibility, we choose these two categories because products within

these categories are highly substitutable.26 For all specifications, we focus only on shopping

bag additions and not on a consumer’s wish-list as the latter provides a noisy measure of a

consumer’s actual choice.

Table 11 reports estimates from the the PCMNL model for both sub-categories (travel bags

and watches). The majority of products in both sub-categories (more than 80%), receive a

saliency shock at least once and vary only in the timing of receipt. Columns (1), (3) and (5)

24Note that although these new products are unavailable to consumers before they were launched, we still
include them in our estimation. This is un-problematic because the the inclusion of the consideration stage,
implicitly allows for some options to be irrelevant for some consumers (for example, those who visited the website
when the product was not yet launched). For a more formal result, see ? who discuss how the non-availability of
products can be incorporated into a demand model with unobserved choice sets.

25For this reason, we are also unable to include product dummies in our specification. The inclusion of product
dummies (in both the consideration and choice stage) makes the likelihood highly non-convex, resulting often in
the non-convergence of our estimator. However we verify that the results from the MNL model are not sensitive
to the inclusion or non-inclusion of product dummies. Counterfactual sales shares from either specification in the
MNL are approximately the same.

26This is unlikely to occur in a category such as “clothes”, where consumers are likely to complement each choice
with other products from the same category.
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report coefficients from the consideration stage. We find that product saliency has a strong,

positive and significant effect on consideration. Consumers, in our context, do not appear

to be price-sensitive, but display a preference for choosing new products. While we find a

small, positive and significant effect for saliency at the choice stage (Column (2)), this ef-

fect disappears when we disaggregate it for existing and new products. Column (3) shows

that, for existing products, saliency has an insignificant effect on the probability of purchase

in the choice stage. On the other hand, consumers are less likely to choose new products

that are recommended (conditional on consideration), perhaps because they value new prod-

ucts that are more unique and less substitutable. Overall, taken together (consideration and

choice), the aggregate marginal effects for saliency indicate an average increase in sales of 3%

(travel bags)to 15%(watches) after being recommended by a new product (thereby increasing

saliency). These effects are consistent with the results obtained from the reduced form analy-

sis where we find that saliency increases product sales on average by approximately 6%. The

reason why we find a lower marginal effect for travel-bags compared to watches is because

most products in the travel bags category have a high consideration level in the market. Our

model estimates imply that the average share of consumers who consider a product within

the category travel-bags is a relatively high 78% compared to a low 49% for watches.27

Table 12 presents a sample of estimated own- and cross-price elasticities.28. Each entry j, k,

where j indexes row and k column, gives the elasticity of product j with respect to a change

in the saliency of k. Note that the products are labelled according to their sales rank (1

corresponding to the top-selling product in the sub-category). Each entry reports the mean

elasticity across the 90 consumers who shopped four travel bags. The variation in estimated

elasticities (given by the ratio of the maximum to the minimum cross-price elasticity within a

column) ranges from -2 to 0. This indicates that the model has overcome the restrictive form

imposed by the multinomial logit model which produces proportional substitution elasticities

(?). Most cross-elasticities are negative29 indicating that recommendations generate negative

externalities, contracting the market for other products. Some cross-elasticities are positive,

indicating positive externalities. This could be a result of spillovers from the saliency effect

through cross-recommendations as documented in section 5.5. Overall, the average change

in sales for all products as a result of a change in saliency for any product j , is negative but

much smaller than own-elasticity effects.

Table 12 also allows us to investigate whether observed increases in demand for more salient

products are driven by more customers purchasing these products (extensive margin) or

whether customers substitute salient products for products that were not made more salient

27The average share is calculated as the mean of each product’s consideration share. The share of consumers

who consider a product j is given by: (1/I)

�

∑

j

∑

ct∈G
δ

ct
i j t Pi t(ct)

�

where I is the total number of consumers.

28For the elasticities and counterfactuals reported below, we choose the specification where the saliency param-
eter has not been disaggregated for new and existing products (columns (1) and (2) of Table 11) We do this to
examine the overall saliency effect, which simplifies our policy counterfactuals as well as the interpretation of the
results.

29Note, that the zero elasticities are a result of the fact that saliency is zero for these (column) products.

25



within product categories (intensive margin). The estimated own- and cross-price elasticities

suggest that effects at both extensive and intensive margins are at work. For most products,

cross-elasticities are overall negative, which suggests some substitution between products that

received a saliency shock and other products which indicates effects are driven by changes at

the intensive margin. That said, a comparison between own- and cross-elasticities suggests

that for 8 out of 10 products this substitution effect is outweighed by an increase in demand

for the more salient product. In other words, the demand increase occurs also at the extensive

margin, i.e., new customers purchasing a salient product within a given product category.

6.3 COUNTERFACTUALS

Based on our model estimates, next we simulate counterfactuals to assess how sales shares

change when: (1) consumers have full, instead of limited, attention (?) and (2) only certain

types of products receive recommendations. ? show theoretically that while recommendation

systems help generate a positive surplus for the platform as a result of improved matches, the

overall effect may not be Pareto improving, as market participation may shift in favor of some

products against others. We investigate this issue empirically, by examining how different

types of recommendations systems impact the sales share of popular vs. unpopular products,

when consumers have limited attention.

For the full attention case, our model reduces to a standard multinomial logit (MNL) model;

we thus use the estimated parameters from the MNL model to calculate sales shares when

consumers have full attention. To assess the performance of different recommendation sys-

tems, we define the set of “popular products” as those with an observed sales share of more

than 10% (products 1, 2 and 3). The remaining products (products 4 to 12) are categorized

as “unpopular products.” We then consider two variants of the recommendation system: i)

when only popular products are (always) recommended (products 1, 2 and 3) and ii) when

only unpopular products are (always) recommended (products 4 to 12).

Figure 16 plots the results from the simulations. Each bar in the figure represents the per-

centage difference in sales share between when consumers have limited attention and when

they have full attention. A negative value indicates that the share under limited information

is lower than that under full attention. The x-axis orders products by their sales rank (1 being

most popular and 12 being least popular).

The first result is that limited attention disproportionately harms top-selling products. Popular

products suffer a loss in their sales share when consumers have limited attention under the

existing recommendation system as indicated by the dark grey bars. Intuitively, popular prod-

ucts are chosen less when consumers have limited attention because they enter less frequently

in their consideration sets. Under full attention however, they are always in a consumer’s con-

sideration set and are frequently chosen based on their superior underlying characteristics.

As the actual recommendation system does not disproportionately highlight popular products

(Table 11 reports that 10 out of 12 products in this sub-category are recommended by a new
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product at least once), their share under limited information is always lower relative to the

full attention scenario.

Next, we consider a different recommendation system, whereby, all new products recommend

only popular products, namely products 1, 2 and 3. Under this scenario (medium gray bars),

we find the difference in sales share for popular products 1 and 2 is still negative but the loss

that they suffer is much lower than when all products are equally recommended. Popular

product 3 actually reverses the share differential and stands to gain by almost 2% under this

system. In contrast, some unpopular products (7, 10, 11 and 12) register a negative difference

as a result of only popular products being recommended.

Finally we plot how sales shares evolve under limited and full attention, if only unpopular

products received recommendations from new products. The light grey bars show that this

would, predictably, lead to an increase in the share of unpopular products (under limited

attention) and cause the sales share difference to increase by almost about 1.5%. Unpopular

products benefit from consumers having limited attention (relative to full attention) because

popular products will be even more overlooked under this recommendation system. Popular

products in contrast lose up to 4.5% of sales share under this setting.

7 CONCLUSION

In this paper we estimate the effect of product saliency, affected via recommendation sets,

on user choice in online markets. We find a sharp and robust 6% increase in the sales of a

product when it is recommended by a highly popular new product. This effect is however

short-lived, lasting for approximately only four days. On average the daily increase in sales

attributable to saliency is around 5%. We also find that products recommended in smaller sets

experience larger effects of saliency as they have to compete less for user attention. Finally,

our context allows us to build a robust counterfactual to verify our results. We exploit regional

variation in recommendation sets whereby we compare regional sales of products that receive

recommendations from the same product but over different regions. We find that products

recommended by a new product in America see a 13% increase in their American-Europe sales

differential over the 4 event days, compared to similar products recommended exclusively in

Europe by the same new product. Our structural analysis confirms that the reduced form

effects of saliency on sales are the result of saliency affecting the set of products considered

by a consumer. Once we condition on the effect of saliency on the consideration set, saliency

has no effect on choice.

Our analysis sheds light on consumer choice in an environment with low search costs but

very large choice sets. Our evidence rejects the traditional revealed preference assumption

and suggests that consumers make choices consistent with revealed attention. In other words,

we find that consumers make choices under limited attention despite having easy access to

information. This results in a search friction as consumers do not consider all products avail-
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able on a given online platform. However, we also show that online platforms operating in

these environments can alleviate this friction by helping refine user search by offering prod-

uct recommendations. We show that such recommendations can temporarily affect the sales

and appeal for products by shaping and expanding consumers’ consideration sets. Indeed, our

counterfactual analysis suggests that different recommendation systems can have large effects

on the demand for a given product if consumer choice is subject to limited attention.
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Figure 1: Recommendation sets
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Figure 2: Recommendation sets U.S. vs. Europe
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Figure 3: Differences in shopping bag additions between existing products recommended by
new products and all other products
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Table 3: Descriptive statistics: average prices of products recommended by new products and
non-recommended products

Price (in US$) Recommended Not recommended Difference

All 1,075.34 1,036.86 38.47

Accessories 989.08 1,045.29 -56.21
Bags 1,666.98 1,732.24 -65.25
Beauty 71.65 78.99 -7.34
Clothing 1,250.59 1,281.34 -30.75
Lingerie 258.28 222.23 -36.04**
Shoes 800.14 873.05 -72.91**

∗∗ Difference significant at 5%.

Table 4: Descriptive statistics: product recommendations by new products

# Products Recommended by If recommended
new product # recommendations

# products % Total Mean SD Max

By product recommended by new product

All 6,693 43.46 1.50 0.91 23

Accessories 1,197 52.61 1.49 0.79 8
Bags 590 50.77 1.49 0.75 6
Beauty 310 31.47 1.55 1.39 9
Clothing 3,523 42.24 1.53 0.84 8
Lingerie 240 27.71 1.98 2.30 23
Shoes 833 47.06 1.45 0.79 8

By product recommended by new product and time

All 373.57 2.95 1.27 0.68 23

Accessories 64.19 3.56 1.28 0.62 8
Bags 32.63 3.57 1.27 0.58 6
Beauty 6.98 0.75 1.44 1.26 9
Clothing 224.68 3.34 1.26 0.61 8
Lingerie 6.37 0.79 1.84 2.09 23
Shoes 38.68 2.62 1.24 0.61 8
The upper part of this table reports statistics when we consider whether an existing
product was recommended by a new product during the entire period of observation.
The lower part of the table, in contrast, reports statistics when we consider whether an
existing product was recommended by a new product on a given day during the period
of observation. The # of products recommended by new products in the lower part of
the table are therefore the average number of existing products recommended by new
products on any given day.
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Figure 4: Saliency Shock: New Product

This figure reports coefficient estimates (with 95% confidence intervals) of the effect of entry – being a new product – on the total
number of shopping bag additions (per day). The sample consists of all daily, product-level, transactions carried out between May 20,
2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. New Product is a dummy variable taking the value one is the product was introduced in the catalogue on a given
day. The regression specifications controls for time fixed effects, controls for day of the week and weekend.
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Table 5: Effects of Saliency on Total Purchases

(1) (2) (3) (4)

Saliency 0.059*** 0.057*** 0.055*** 0.054***
(0.013) (0.014) (0.016) (0.016)

Forward Lag of Saliency -0.027 -0.027 -0.029
(0.017) (0.017) (0.018)

New Product 0.967*** 0.981*** 0.980*** 0.954***
(0.040) (0.040) (0.041) (0.041)

Saliency × New Product 0.003 0.004
(0.022) (0.022)

2 Week Lag of New Product 0.069**
(0.027)

Time and Day F.E Yes Yes Yes Yes
Observations 986214 969368 969368 969368
This table reports results on the effect of the saliency shock on the total number of shopping bag additions (per
day). The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29,
2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced
panel of products over time. New Product is a dummy variable taking the value one is the product was introduced
in the catalogue on a given day. Saliency is defined as the total number of new products that recommend the
target product at any given point of time. All specifications control for time fixed effects, controls for day of the
week and weekend. Standard errors clustered by product are reported in parentheses. * indicates significance
at 10%; ** at 5%; *** at 1%.

Table 6: Effects of Saliency on Total Wishlist

(1) (2) (3) (4)

Saliency 0.056*** 0.054*** 0.063*** 0.060***
(0.011) (0.011) (0.017) (0.017)

Forward Lag of Saliency -0.005 -0.004 -0.007
(0.018) (0.018) (0.018)

New Product 1.181*** 1.187*** 1.192*** 1.130***
(0.029) (0.029) (0.030) (0.029)

Saliency × New Product -0.014 -0.010
(0.021) (0.021)

2 Week Lag of New Product 0.210***
(0.020)

Time and Day F.E Yes Yes Yes Yes
Observations 932539 915993 915993 915993
This table reports results on the effect of the saliency shock on the total number of wish-list additions (per day).
The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014.
As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. New Product is a dummy variable taking the value one is the product was introduced in the
catalogue on a given day. Saliency is defined as the total number of new products that recommend the target
product at any given point of time. All specifications control for time fixed effects, controls for day of the week
and weekend. Standard errors clustered by product are reported in parentheses. * indicates significance at
10%; ** at 5%; *** at 1%.
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Figure 5: Staggered Effects of Saliency Shocks

This figure reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day). The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a
result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of products over time. Saliency is
defined as the total number of new products that recommend the target product at any given point of time. The regression specifications
controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.



Figure 6: Staggered Effects of Saliency Shocks

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day). Figure (a) reports the effect of saliency for existing products while figure (b) reports the effect of saliency for new
products. The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a result of
the thrice-weekly introduction of new products, our database represents an unbalanced panel of products over time. Saliency is defined
as the total number of new products that recommend the target product at any given point of time. The regression specifications controls
for the entry of a new product, time fixed effects, controls for day of the week and weekend.



Figure 7: Saliency Shocks: : Controlling for Lagged Effect of New Product

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day) controlling for lagged entry effects, i.e, we include the two-week lag of whether a product was new in the specification.
Figure (a) reports the effect of saliency for existing products while figure (b) reports the effect of saliency for new products. The sample consists
of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of
new products, our database represents an unbalanced panel of products over time. Saliency is defined as the total number of new products
that recommend the target product at any given point of time. The regression specifications controls for the entry of a new product, time fixed
effects, controls for day of the week and weekend.



Figure 8: Saliency Shocks: Controlling for Differential Anticipation Effects

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day) controlling for differential anticipation effects, i.e, we split and include the anticipation effect (forward lags of saliency)
between products that received a prior saliency shock and those that did not. Figure (a) reports the effect of saliency for existing products
while figure (b) reports the effect of saliency for new products. The sample consists of all daily, product-level, transactions carried out between
May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. Saliency is defined as the total number of new products that recommend the target product at any given point of time. The
regression specifications controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.



Figure 9: Saliency Shocks: Attention Effects

This figure reports coefficient estimates (with 95% confidence intervals) of the effect of saliency and its interaction with ‘attention’ (size of set)
on the total number of shopping bag additions (per day). The sample consists of all daily, product-level, transactions carried out between
May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. Saliency is defined as the total number of new products that recommend the target product at any given point of time. Our
proxy for attention, the size of the set is defined as the average size of new product recommendation sets that include the target product. The
regression specifications controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.

Figure 10: Saliency Shocks: Price Effects

This figure reports coefficient estimates (with 95% confidence intervals) of the effect of saliency and its interaction with the price of the product
on the total number of shopping bag additions (per day). The sample consists of all daily, product-level, transactions carried out between
May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. Saliency is defined as the total number of new products that recommend the target product at any given point of time. Price
is the retail price of the product in US dollars. The regression specifications controls for the entry of a new product, time fixed effects, controls
for day of the week and weekend.



Figure 11: Saliency Shocks: Wishlist with Controls for Lagged New Product Effects

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of wish-list additions
(per day) controlling for lagged entry effects, i.e, we include the two-week lag of whether a product was new in the specification. Figure (a)
reports the effect of saliency for existing products while figure (b) reports the effect of saliency for new products. The sample consists of all daily,
product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products,
our database represents an unbalanced panel of products over time. Saliency is defined as the total number of new products that recommend
the target product at any given point of time. The regression specifications controls for the entry of a new product, time fixed effects, controls
for day of the week and weekend.



Figure 12: Saliency Shocks: Wishlist with Control for Differential Anticipation Effects

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of wish-list additions
(per day) controlling for differential anticipation effects, i.e, we split and include the anticipation effect (forward lags of saliency) between
products that received a prior saliency shock and those that did not. Figure (a) reports the effect of saliency for existing products while figure
(b) reports the effect of saliency for new products. The sample consists of all daily, product-level, transactions carried out between May 20,
2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of products
over time. Saliency is defined as the total number of new products that recommend the target product at any given point of time. The regression
specifications controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.



Figure 13: Staggered Effects of Saliency Shocks for Complementary Products

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day). Figure (a) reports the effect of saliency for existing products while figure (b) reports the effect of saliency for new products.
The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a result of the thrice-weekly
introduction of new products, our database represents an unbalanced panel of products over time. Saliency is defined as the total number of
new products that recommend the target product as complimentary at any given point of time under the heading. The regression specifications
controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.
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Figure 14: Saliency Shocks: Placebo

(a) Saliency America

(b) Saliency America × New Product America

(c) Saliency Europe × No Saliency America



Table 9: Differences between treatment and control products

Treatment Control Difference t-statistic

Pre-Event:
Price (in US$) 1,062.20 1,092.67 30.47 0.5283
US-EUR Diff in Purchase -0.001 0.012 0.013 0.5283

Post-Event:
US-EUR Diff in Purchase -0.050 -0.162 -0.111*** -3.3013

Observations 1296 1773

∗ ∗ ∗ Difference significant at 1%.

Figure 15: Double Diff-in-Diff: Common Trends



Table 10: Effects of Saliency on Difference in Demand b/w America and EUR

(1) (2) (3) (4)

Treatment 0.017 0.017 0.000
(0.029) (0.029) (0.029)

Post 0.000 0.155 0.169
(0.000) (0.102) (0.108)

Treatment × Post 0.079** 0.079* 0.244**
(0.038) (0.040) (0.118)

Treatment × Post × Size of Set -0.012*
(0.007)

Post (Day 0) 0.060
(0.043)

Post (Day 1) 0.075
(0.058)

Post (Day 2) 0.127***
(0.049)

Post (Day 3) 0.052
(0.052)

Controls for product ‘age’ Yes Yes Yes Yes
New Product (Block) F.E. Yes Yes Yes Yes
New Product (Block) × Post F.E. Yes Yes Yes Yes
Product F.E. No Yes No Yes

Observations 7161 7161 7161 7161
This table reports results on the effect of the saliency shock on the difference in toal shopping bag additions (per day),
between America and Europe. The sample consists of a subset of, products that are recommended exclusively in the two
regions, America and Europe. For this sample of product the specification estimates a double difference-in-difference equa-
tion for the sample’s daily transactions over a (-3,+3) event window. Treatment is a dummy variable that takes the value 1
if the product was recommended in America but not in Europe. Post a dummy variable indicating the post-event window
(0,+3). Our proxy for attention, the size of the set is defined as the average size of new product recommendation sets that
include the target product. Age of the product is the number of days since the product was released in the catalogue for sale.
Standard errors clustered by product are reported in parentheses. * indicates significance at 10%; ** at 5%; *** at 1%.
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sumer choices on the internet are consistent with models of limited attention. We test whether con-

sumers are more likely to buy products that receive a saliency shock when they are recommended by

new products. To identify the saliency effect, we rely on i) the timing of new product arrivals, ii) the

fact that new products are per se highly salient upon arrival, drawing more attention and iii) regional

variation in the composition of recommendation sets. We find a sharp and robust 6% increase in the

aggregate sales of existing products after they are recommended by a new product. To structurally
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1 INTRODUCTION

A standard simplifying assumption about consumer behaviour is that consumers consider all

alternatives when making choices. However, exercising choice requires awareness of all avail-

able options which may be limited by search costs or by cognitive overload over the number

and variety of products available to a consumer (Sims 2003; Caplin et al. 2011). Many

e-commerce websites offer thousands of products for sale even within narrowly defined sub-

categories. For instance, Amazon offers more than 3,000 options for buying a television.

Further narrowing of search in this category produces at least 190 options.1

A growing literature on the nature of consumer search on the internet has documented that

despite the low physical search costs associated with internet browsing, there appears to be a

prevalence of search frictions due to a scarcity of attention towards the large variety of avail-

able choices (Dinerstein et al. 2014). In the face of very large choice sets in these settings, it is

plausible that consumers may try to simplify decisions by examining a smaller set of products

(Masatlioglu et al. 2012); for example, Kim et al. (2010) report that consumers typically only

search for 11% of all available options (for camcorders) on Amazon. Experimental evidence

too, confirms that limits to attention impose a bottleneck on processing stimuli (Mozer and

Sitton 1998).

In view of this, many online marketplaces frequently engage in tactics to attract user attention

towards their products. Eliaz and Spiegler (2011) show that marketing devices, employed by

firms, are likely to influence the set of products that a consumer chooses to consider, termed

her consideration set. Hauser and Wernerfelt (1990) confirm this empirically, and find that

consumer consideration sets respond to actions by firms that increase the visibility or salience

of products.2 One such tool, the product recommendation system,3 through which a subset of

products are selectively highlighted to users, is increasingly used by firms to attract attention

and increase awareness towards products (Fleder and Hosanagar 2007). Yet, field evidence

on the effectiveness of such recommendations, and indeed how they affect consumer choice, is

limited. A small body of experimental studies in the laboratory find that subjects who receive

recommendations for a product are more likely to select it relative to those who do not receive

them (Senecal and Nantel 2004; Huang and Chen 2006). Kim et al. (2010) use aggregate

product search data from Amazon and find in a policy simulation that a recommendation

system, highlighting popular products, significantly affects their demand and lowers search

costs.

In this paper, we examine whether consumer choice online is influenced by impersonal prod-

uct recommendations. To investigate the question, we use data on shopping purchases from

1The applied search filters are: Home Entertainment, 50-59 inches, 1080p resolutions, flat screen.
2A situation where firms can influence the attention process by sending signals to consumers is commonly

referred to as ‘stimulus-driven’ attention allocation in contrast to ‘rational inattention’, where (only) consumers
choose and optimize resources for the allocation of their attention. The effect of visibility on consumer behavior
is also known as the ‘mere exposure effect’ in the psychology literature (Zajonc 1968).

3Product recommendation systems typically use a ‘collaborative-filtering’ technology that chooses items for
recommendations based on similarity measures between users and/or items (Schafer et al. 2007).
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an exclusively online retail store, which offers a list of product recommendations for every

product available on the website; these recommendations are not personalized and instead

based largely on attribute similarity. We focus on two objectives: the first is to provide causal

evidence on the the extent to which recommendations affect aggregate product sales, indepen-

dent of product popularity or underlying characteristics. Our second objective is to examine

whether the saliency effect generated by product recommendations limits consumer attention

to a smaller consideration or evoked set. To do so, we estimate a reduced form model of

consumer choice that allows us to determine the causal effect of product recommendations

on sales. To establish that the effect is driven by the impact of saliency on consideration sets,

we estimate a random utility model that incorporates the formation of a consideration set in

the first stage of a consumers’ decision making process and test whether saliency generated

by product recommendations affects both the formation of this set and the consequent choice.

Our identification strategy focuses on product recommendations coming from the arrival of

new products. Since new products are highly viewed upon arrival, we are able to focus on the

aspect of product saliency, that is, the prominence of a product in a consumer’s mind. Specif-

ically, we analyze what happens to the sales of an existing product after it is recommended

by new products. Since new products are highly salient, the recommended existing product

receives a positive “saliency shock.” We exploit both the timing of new product arrivals, which

highlight a set of similar products already available on the website (the recommendation set),

and regional variation between Europe and North America in recommendation sets to identify

our saliency effect. Our double difference-in-difference strategy allows us to difference out

both product-by-time and region-by-time unobservables. In addition we are able to employ

new-product fixed effects to absorb any possible correlation between characteristics of new

products and the products they recommend, ensuring that these saliency shocks are treated

as exogenous with respect to the individual existing recommended products.

There is, by now, a large literature on the effect of salience measured via product popularity

on sales (see for example, Sorensen (2007), Carare (2012), Cai et al. (2009) and Tucker and

Zhang (2011)).4 However, such evidence cannot rule out the possibility that the visibility

of such goods actually imparts information. The effect of being on the first page or being

popular also captures latent product quality or price-based relevance. Our approach differs

from the existing literature as we focus on the effect of saliency shocks generated by rec-

ommendations from new product arrivals. The saliency of new products is useful because it

generates a “spillover saliency” effect for existing products that are recommended by the new

product. Our identification strategy, therefore, allows us to distinguish between pure saliency

and information/popularity effects.

4Smith and Brynjolfsson (2001) examine the online purchase of books and find that being among the first few
entries or on the first page on a search list is more important than being the first entry. Baye et al. (2009) show
that on-screen placement of a link, based on its pricing, on an online search page is a central determinant of the
number of clicks. There is also considerable evidence that salience and limited attention matter in other settings:
Chetty et al. (2009) show that that consumers underreact to taxes that are not salient. DellaVigna (2009) provides
a comprehensive review of the literature examining saliency and limited attention.
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Our results indicate a sharp and robust 6% increase in sales of products after they receive a

saliency shock. This saliency effect is short-lived, with the majority of the effect concentrated

around the day that the product receives the saliency shock, diminishing rapidly thereafter.

The effect completely disappears three days after the saliency shock has been received when

the next batch of new products is launched on the platform. Such a pattern of effects, with

a prominent spike in a product’s sales on the day that they are recommended, is consistent

with the “attention” based explanation that products receiving a saliency shock have been

previously overlooked by consumers. The lack of persistent long-term effects on sales is in

fact incompatible with selection-based explanations which would imply that recommended

products would have experienced an increase in sales regardless of the recommendation.5

Further, we find that the saliency effect is larger for products recommended in smaller sets,

suggesting that consumers pay attention to products that are more visible. We also find signif-

icant (positive) spillover effects. Products recommended by saliency-shock-affected products

also see an increase in their sales on the day that new products are launched, but to a much

lesser extent.

Although our reduced form results show that recommendations have a sizeable causal impact

on sales, it is unclear how this effect is derived from a consumer’s choice process. Products

that gain saliency are likely to receive more attention by consumers, in this way increasing

the probability that they are considered (Haan and Moraga-González 2011). Even then, it is

possible that, independent of increased attention, consumers derive utility from saliency i.e,

they have a direct preference for products recommended by new products.6 Therefore, in

order to understand how consumer demand is affected by recommendations, we estimate a

random utility model that incorporates the formation of a consideration set in the first stage

of a consumers’ decision making process. Manzini and Mariotti (2014) provide theoretical un-

derpinnings for the formulation of such types of stochastic consideration sets and show that

the consideration probability can be interpreted as an attention parameter, indirectly measur-

ing the degree of product awareness. Our consideration set model, based on Manski (1977),

recognizes the choice process as sequential and allows for heterogenous consideration sets

across individuals. In this way, we are able to distinguish between a consumer’s consideration

for the product due to saliency and her preference for saliency itself. Our model also avoids

the Independence of Irrelevant Alternatives (IIA) assumption and accommodates the feature

of choice frequency reversal due to the addition or elimination of other alternatives. Note that

we do not however explicitly model the consumer search process, as is done, for example, in

De los Santos et al. (2012) and Kim et al. (2010) and thus are unable to draw conclusions

5All our specifications include (panel) leads on the saliency shock variable, as well as their cumulative pre-
saliency status, to mitigate the concern of anticipation effects. Our results consistently show insignificant effects
for the included leads. In addition, our alternative identification strategy, which exploits regional variation in the
composition of recommendation sets, relies only on a common trends assumption between a recommended and
non-recommended product for the same new product. We show that this assumption is empirically validated in our
data.

6For example, it is possible that all products linked to a new product are considered “trendy.” To the extent that
consumers have a direct preference over consuming products that are in line with the current trend, our proxy for
saliency will enter a consumer’s utility function.
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about how recommendations may affect search.7

Using micro-data on shopping transactions we find that saliency has a strong, positive ef-

fect on the consideration (of existing products) but no further effect on choice, conditional

on consideration. We estimate that the saliency effect is higher within sub-categories where

only a few choices are considered. Based on our model estimates we present counterfactu-

als that compare how sales shares for products change when consumers have limited vs full

information. Our results indicate that under the current recommendation system, where all

products tend to be equally highlighted, popular products tend to suffer a loss in sales share

when consumers have limited attention simply because they are not considered. Popular

products would, however, stand to gain under limited attention (by up to 4% of sales share

difference), if the website only recommended popular products, but this increases the con-

centration of sales towards popular products in the market. These results are consistent with

a “segmentation effect” of improved within-platform search (through for example, recom-

mendation systems) that shifts market participation in favor of some products against others,

identified theoretically by Lewis and Wang (2013).

There is some existing empirical evidence to support models of limited attention through the

formation of consideration sets. A large literature, mainly in marketing science, uses explicit

structural or functional form restrictions to model the formation of consideration sets and its

subsequent effect on choice (see for example Van Nierop et al. (2010); Chiang et al. 1998;

Andrews and Srinivasan 1995; Roberts and Lattin 1991). A small but growing literature in

economics uses exclusion restrictions to estimate a consumer demand model with limited

attention. For example, Goeree (2008) uses advertising expenditure, proxied by media ex-

posure, as an exogenous shifter that affects a consumer’s consideration but not her utility.

Draganska and Klapper (2011) do not impose such a restriction on advertising but treat it as

fully exogenous and assume that the consumer’s choice set is limited to only the set of brands

that she is aware of. Kawaguchi et al. (2014) propose an alternative methodology that uses

product availability as an exclusion restriction to test for attention.8

Our methodological approach is similar in spirit but we exploit a richer context, incorporating

not just the availability of new products but also variation in product visibility, to identify and

estimate the presence of consumer inattention. Additionally, in contrast to some of the existing

literature, our paper does not require product saliency, a form of advertising, to be exclusive

to the consideration process and allow it to affect consumer utility. Neither do we place any

restrictions on the composition of the consideration sets or the process of choice formation.

Finally, instead of relying on aggregate proxies, we use a direct measure of product visibility

and salience shocks that vary frequently both across products and over time.

7We lack data on consumer specific search over different products to be able to explicitly feature search in our
framework. In general, consumers may face heterogenous search costs that are fixed across all products (De los
Santos et al. 2012) or vary by product (Kim et al. 2010), but our consideration stage specification is agnostic about
this. In this sense, our results for the consideration effect can be viewed as a mixture of increasing awareness and
lowering search costs.

8Conlon and Mortimer (2013) provide an application using stock-outs, but they do not take into account the
endogeneity of product stock-outs.
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Our research contributes to two important literatures. First, our paper contributes to the

fast-growing literature on the economics of digitization that analyzes consumer behavior on

the internet by offering evidence on the effect of online recommendation systems. To the

best of our knowledge, our paper is the first to do so. Choosing amongst the entire range

of products offered by e-commerce can often be challenging for any consumer shopping on

the internet, and recommendation systems offer a possible way to alleviate this friction. We

also contribute to the field of behavioural economics and the literature on the economics of

attention by offering empirical evidence that choice sets are limited by bounded rationality

even in an online setting where search costs are minimized.

The remainder of this paper is organized as follows. Sections 2 and 3 describe the setting and

data used in our analysis, respectively. Section 4 presents our empirical approach to identify

saliency effects in the data. Sections 5 & 6 present our results and Section 7 offers a few

concluding remarks.

2 DESCRIPTION OF ONLINE MARKET

We use data from an online luxury fashion retailer, Net-a-Porter, selling top fashion brands

such as Burberry, Dolce & Gabbana, Gucci and Dior. Founded in 2000, Net-a-Porter sells

fashion, shoes and accessories to 170 countries.9 The company sells almost exclusively to

women, the majority of whom have a graduate degree, and claims that its average consumer

has an (annual) household income of $170,000 and expenditure on fashion is $13,000. It

claims 6 million unique users worldwide every month, with a third in the U.S. and 40% in the

UK and the rest of Europe, with an average value of an order at $500. The website is highly

successful, with a bounce rate of 34.8% in 2015 and an average of slightly over 6 page views

per visitor.10

Net-a-Porter is widely considered to have revolutionised retailing luxury fashion because from

a customer’s perspective it does away with the experience of shopping in an exclusive store

and from the fashion label’s point of view it dispensed with the need for expensive retail

stores. To achieve this, Net-a-Porter undertakes efforts to raise confidence and reduce the risk

in only luxury shopping by offering extensive product views (including videos, measurements

of products and detailed product description), careful distilling of trends, and an efficient

global courier delivery system, with 24 hour delivery service in London and New York.

There are three points about this retailer that make it a useful setting for examining consumer

choice. The first is that the website provides recommendations for every product which are

non-personalised. This is ideal for our analysis as we are able to avoid dealing with a large

9It was founded in 2000 as a small start-up and is now part of Richemont, a Swiss-based luxury conglomerate,
which bought a 93% stake in 2010. Net-a-Porter had sales of Eur 550m last year and is now worth Eur 2.5 billion,
roughly six times its value when Richemont invested in it.

10The bounce rate is the percentage of users that arrive on the website and leave without viewing a second page
on the site. Net-a-Porter’s bounce rate is comparable to that of other highly successful online luxury retailers such
as Neiman Marcus or Mytheresa. Data from www.alexa.com.
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amount of consumer heterogeneity present in most personalised recommendation systems.

Second, the only other information provided on each product page, in addition to recommen-

dations, are product attributes (image, price, description, dimensions etc). Importantly, the

information does not include any signal on the underlying popularity of the product through

reviews or sales-rank or any such instruments. This ensures that users are not choosing prod-

ucts based on their popularity on the web-site as such information is absent. Finally, the

concept of the web-site is innovative, marrying both content and commerce, enabling it to

attract a large volume of customers. In brief, the site allows us to examine choice across

more than 15,000 products and 530 brands, in a setting where consumers are largely fully

informed about product and brand attributes including prices and product recommendations

are not tailored towards individual customers.

3 DATA

The data were obtained from the Net-a-Porter website between May and August 2014. The

main dependent variable that we use consists of information on additions to the shopping

bag and wishlists by anonymous buyers which provides information on potential sales of

products.11 The data consists of several components:

Products: We parsed the entire set of available products from Net-a-Porter’s product cata-

logue. The catalogue distinguishes between broad categories: clothing, bags, shoes, acces-

sories, lingerie, sport, and beauty. There are a number of subcategories within the broader

categories (for example dresses, pants, skirts etc. under clothing). The catalogue presents the

products with a number of photos and basic product attributes including the price. Once a

customer clicks on the product, a detailed description appears plus more photos and videos.

Product-level transactions: Net-a-Porter’s online platform includes a feature called Net-a-

Porter “Live” which provides real time data on product sales. The live data feed, updated

every second, allows customers to see how many people around the world (and indeed in

their particular location) are browsing the site with them, and what they are adding to their

shopping bags and wishlists. The transaction-level data used in our analysis comes from

this live ticker. That is, we have product-level information on all items that customers have

added to their wishlists and shopping bags, which includes basic information on product

attributes including brands and prices as well as the precise time when a customer made

these transactions and her physical location. In an informal, confidential discussion with the

11U.S. and U.K. regulations identify several research categories that are considered exempt from Institutional
Review Board oversight (see Office for Human Research Protections (January 15, 2009). "Code of Federal Reg-
ulations". hhs.gov. p. US 45 CFR 46.101. Also see http://www.research-integrity.admin.cam.ac.uk/research-
ethics/guidance). Research involving the analysis of existing data and other materials if they are already publicly
available, or where the data can be collected such that individual subjects cannot be identified in any way is not
subject to such oversight. In our case, we have no information on individual buyers and the data used in our
analysis are publicly visible information on the Net-a-Porter website. Hence, our analysis and all reported results
do not reveal any information on individual users. Neither do we reveal any specific statistics on prices, character-
istics, or shopping bag/wishlist additions of individual products or aggregate data on total shopping bag/wishlist
additions across product groups or the entire website.

7

http://www.net-a-porter.com/live
http://www.net-a-porter.com/live


representatives from the company, we obtained information on the manner in which these

data are presented and the implications for our analysis. First, while the ticker tape does not

provide data on every potential transaction, it is a random sample of transactions, which is

updated every 8-10 minutes. The main idea here is that viewers of the web page stay on

the page for an average of 3 minutes or less and thus updating the list every 8-10 minutes

allows enough variation. Second, it is possible that some additions to the shopping bag do

not result in actual transactions; however, purchases cannot be completed without adding

to the shopping bag. In brief, we have a random sample of potential purchases in these

data. We interpret additions to a customer’s shopping bag as a serious intention to buy the

corresponding product (hence we refer to it as sales), whereas additions to the wishlist are

interpreted as an intention to buy. While these transaction-level data are available per minute,

we aggregate the data to daily intervals.12 Table 1 summarizes the data from the live ticker.

The table distinguishes between existing and new products (see next bullet point) as well as

among products that are recommended by a new product and those that are not.

New products: Net-a-Porter launches new products three times a week: on Monday, Wednes-

day, and Friday. We identify all new products from the “What’s New” category on Net-a-

Porter’s website, which lists all new arrivals. Supply factors largely determine the timing of

these launches. Products are launched on the website as and when they are released by the

product’s producer to Net-a-Porter’s warehouses.

Product recommendations “you may also like” (substitutes): In addition to detailed in-

formation on a given product, the customer is also provided with product recommendations

under the you may also like header – see Figure 1. The products under the you may also like

header form the recommendation sets used in our analysis. These are products that are very

similar to the target product, they usually belong to the same product category (in our sample

99% of recommended products are in the same category as their recommending new products

– see Table 2), a similar price range (the average price difference between recommended and

new recommending products in our sample is close to zero – see Table 2), but not necessarily

the same brand/designer (see Table 2). The number of recommended products differs by

product. Unlike standard models of product referrals, such as Amazon, Net-a-Porter’s recom-

mended sets are not personalised (as in “if you like this, you will also like”) and are simply

potential substitutes (see Section 5.1 for more details).13

12There are three main reasons for aggregating at the daily-level even though the aggregation entails a loss
of information. First, the major source of variation for our variable of interest, saliency shock, is at the daily
level. As such the additional information contained at a lower level of aggregation is not particulary useful for our
purposes. Secondly, minute level transaction data are highly volatile and our aggregation scheme enables us to
reduce the impact of non-relevant microstructure effects that induce noise. Finally, daily aggregation reduces the
amount of data used for analysis, allowing us to compute our estimates more efficiently. To put further structure
on the level of our aggregation, in section 4.1.1, we specify the distribution of the daily transaction volume as a
poisson process. Our dependent variable therefore, counts the number of times a shopping event has occurred
during a daily time interval.

13The sets are not personalised because the aim of the company is to create a shopping experience akin to
browsing a fashion magazine or shopping in a physical store. More recently, Net-a-Porter has created apps that
allow targeting specific audiences through interaction on social media networks. However, our data pre-date this.
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In conversations with Net-a-Porter we learned that substitutes are chosen through a combi-

nation of two tools: one that selects visually similar products14 and another one that selects

products with similar observable attributes. However, no attempt is made to customize the

recommendation sets based on some (subjective) perception of product popularity. We also

confirmed in our conversations with Net-a-Porter that recommendations are not chosen based

on past or expected sales of either the recommending or recommended products. According

to them, the goal of providing recommendations is mainly to suggest similar products (substi-

tutes), similar to what a customer would experience in a brick and mortar fashion boutique.

Regional variation in recommendation sets: It turns out that there is some small variation in

recommended sets across regions which we exploit in our empirical analysis (see Section

4.1.2). That is, in a few cases, the same new product recommends slightly different sets of

products in different regions, say the U.S. and Europe. According to Net-a-Porter this is the

result of the attribute matching tool placing different weights on a product’s attributes in at-

tempts to accommodate taste differences across regions. These product- and region-specific

taste differences, termed as ‘style’ by the merchandise team,15 concern variation in prefer-

ences for designer labels and fashion type (classic vs contemporary etc.) and are fixed over a

product’s life-cycle. This means that any observed differences between recommendation sets

across regions are due to region-specific market characteristics rather than product-specific

demand trends.

Product recommendations “how to wear it” (complements): The website offers also prod-

uct recommendations under a how to wear it header. These recommendations are products

that can be worn in combination with the target product. Hence, usually these are products

from other product categories (for example if the target product is a dress, how to wear it

might show shoes, a bag, and earrings). As such we consider these products as complements

as opposed to substitutes under the you may also like header.

International dimension: Net-a-Porter splits its offer into three geographical areas: the

Americas (which includes the U.S.), International (which includes Europe), and Asia and the

Pacific (which includes India and China). Part of our analysis relies on variation in the sets of

recommended products across these areas (see Figure 2). To obtain the data for the Americas

and Europe, we parsed the data from locations in the U.S. and the UK. Since the live ticker

provides us with the location of customers, we can determine which set of recommended

products a given customer in a given region was able to see.

14The Guardian, in a recent article labels the technology used here as “world-class image recognition technol-
ogy”, see http://www.theguardian.com/media-network/2015/may/14/net-a-porter-fashion-digital-revolution

15The company distinguishes between fixed effects of location, named style and time-varying trends, which are
thought to be the same across locations. We were told explicitly that recommendation sets are not designed as per
trend.

9



4 REDUCED FORM EMPIRICAL SPECIFICATION AND IDENTIFICATION

To establish the relationship between product saliency, through recommendations, and de-

mand we begin by laying out a reduced form specification linking product sales to their

saliency. Later in section 6 we provide more structure to the reduced form effects, by test-

ing whether recommendations impact sales by expanding consumer consideration sets, that

ultimately affect their demand for the product. Before doing that however, we use the re-

duced form specification to describe and motivate our identification strategy for consistently

estimating the causal effect of saliency. The effect of product saliency on its aggregate sales

can be written as:

y j t = α+ψs j t + ε j t (4.1)

The dependent variable, y j t is the total number of shopping bag or wishlist additions for

product j during calender day t. Our main variable of interest is product saliency, s j t , This

variable is defined as follows: We denote s jkt as an indicator for whether product j is included

in the set of recommended products for a product k. We then sum this variable over the set of

all products in the catalogue at date t giving us, s j t =
∑

k,k 6= j s jkt . The variable s j t measures

the intensity of saliency for an existing product j. The coefficient ψ measures the total impact

of saliency on product demand and captures both the consideration and choice probability.

Least squares estimation of this equation will however produce a biased estimate of parame-

ter ψ if products appearing in recommendation sets are endogenously selected. This occurs,

for example, if products that have experienced high demand are targeted specifically through

recommendations, or when similar cheaper products are systematically recommended as sub-

stitutes. Take for example the case of a best-selling handbag . An endogeneity problem would

emerge if the retailer wants to draw attention to its popularity by recommending it frequently

with other products in the same-category. In this case, the saliency parameter, ψ, would

be upward-biased as a result of the positive correlation between unobserved popularity and

the frequency of recommendation. The next section explains how we address the potential

endogeneity issue.

4.1 SOURCES OF IDENTIFICATION

4.1.1 NEW PRODUCT ARRIVAL SHOCKS

To consistently estimate the effect of saliency we use identifying variation from the arrival

of new products and their impact on existing products. Our identification strategy exploits

two features of new products. First, new products are more salient on behalf of their novelty.

Dedicated web-links and email based advertising to announce the arrival of these products

increases their popularity at the time of their arrival. Second, most new products recommend

other products that have already existed on the website but have not been recommended in
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these sets before. The in-stock products have a demand history that allows us to control for

their latent popularity, thereby eliminating potential selection bias based on past sales.

We therefore make use of the spillover effects of the increased popularity of new products on

the set of existing products that get recommended alongside them. We treat the arrival of new

products as shocks to to existing products’ saliency and use this to identify the saliency effect.

In order to do this, we define the set of new products at every launch date as S. We denote

bsN
jnt as an indicator for whether product j is included in the set of recommended products for

a new product n (where n ∈ S) launched at date t. We then sum this variable over the set

of all possible new products launched at date t giving us, bsN
jt =
∑

n∈S, j 6= j s jnt . The treatment

variable bsN
jt measures the intensity of saliency for an existing product j due to the arrival shock

of new products at time t.

y j t = α+
Γ
∑

λ=−τ
ψτ−λbs

N
j(τ−λ)+µ j + γt + ε j t (4.2)

We use a finite distributed lag model to estimate our model allowing saliency effects on prod-

uct demand to last up to Γ days. For each date, we measure the length of the non-overlapping

effect window λ by the number of days preceding the arrival shock to the number of days

following the arrival shock. The reason for including leads on the treatment variables is to

mitigate concerns about potential selection bias due to anticipation effects, if top (or low)

selling existing products are endogenously chosen to be part of recommendation sets. We in-

clude product fixed effects µ j to absorb product specific heterogeneity. We also accommodate

different time trends in product demand by incorporating calender day fixed effects.

To estimate Equation 4.2, we use a fixed effect poisson model, as our dependent variable –

the daily count of total shopping bag or wish-list additions – follows a poisson distribution.16

Denote the vector of all explanatory variables by xjt and the vector of all coefficients as Φ. In a

fixed effect specification, the conditional likelihood is conditioned on the sum of the outcomes

over the product-specific panel dimension (T j) (Cameron and Trivedi 2013). For inference,

we use cluster-robust standard errors, where each cluster is a product, to account for product

specific serial correlation in ε j t using the formula derived in Wooldridge (1999).

4.1.2 REGIONAL VARIATION IN RECOMMENDATION SETS

To further strengthen our identification strategy, in addition to employing product arrival

shocks, we exploit regional variation in recommendation sets. One concern with our previ-

ously described specification is that new products and products that they recommend share

16As noted before, we specify the distribution of the daily transaction volume as a poisson process deriving from
the underlying second-level transaction generating data. Our dependent variable counts the number of times a
product has been added to the shopping basket or wishlist during a daily time interval. We assume implicitly that
this is a process with independent increments – this is a justifiable assumption given that the website does not
display product-specific shopping trends (cumulative or daily) and that the customers shopping on this website
are not explicitly related in any way and are unable to fully observe each other’s purchases.
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some correlated attributes. If the attributes that make a new product sell well are correlated

with the attributes that determine which existing product are recommended, then those ex-

isting products will also sell well post the introduction of the new product, not because of the

recommendation but because of the shared attributes. Even though we control for the past

sales record of each recommended product in the previous specification, we further strengthen

our identification to resolve the issue of correlated effects by exploiting regional variations in

the composition of recommendation sets. This allows us to include a new product fixed ef-

fect and absorb all sales-enhancing correlated effects. In addition the strategy allows us to

difference out product-by-time unobservable characteristics.

As explained in Section 3, Net-a-Porter provides different recommendation sets across regions

for a few products . These differences are a result of regional taste differences that are specific

to a product but do not vary over its life-cycle. With that in mind, we decompose the region-

specific residual (for each region R), εR
jt into the following components:

εR
jt =ω j t +µ

R
j +υ

R
jt (4.3)

whereω j t denotes the time-varying product specific unobservables that are common across all

regions, µR
j is the time-invariant product specific unobservable that differs across regions and

υR
jt is the time-varying product specific unobservable that differs across regions. For example,

in our set-up, µR
j captures fixed regional differences in preferences for each product while υR

jt

captures the differential shift in these preferences.

We now describe how, the regional variation in recommendation sets for the same new prod-

uct allows us to difference out the relevant components of the overall residual. To begin with,

we normalize our time variable to event-time days and restrict our analysis to -3/+3 days of

product j receiving the saliency shock (day 0). We consider the two regions in which most of

the transactions occur - America and Europe - and introduce an additional subscript n which

indexes the overall product recommendation set associated with a new product. Therefore

yR
jnt is the total shopping bag additions for product j recommended by new product n at time

t in region R. For each region, we define the treatment variable, bTR
jn, as an indicator taking the

value one if product j was recommended by new product n in region R. Post t is an indicator

for the time period following the saliency shock i.e. day 0 to day 3.

yAMR
jnt = β1bT

AMR
jn + β2(T

AMR
jn × Post t) +µ j + γt +ω jnt +µ

AMR
in +υAMR

jnt
︸ ︷︷ ︸

(4.4)

y EUR
jnt = β1T EUR

jn + β2(T
EUR
jn × Post t) +µ j + γt +ω jnt +µ

EUR
jn +υEUR

jnt
︸ ︷︷ ︸

(4.5)

Now, we can net out the time-varying product specific unobservables that are potentially

correlated with a product receiving a saliency shock by taking a difference of Equations (4.4-

4.5):
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y?jnt = β1T ?jn+ β2(T
?
jn× Post t) +µ

?
jn+υ

?
jnt

︸ ︷︷ ︸

(4.6)

where y?jnt denotes the difference in demand between America and Europe for product j rec-

ommended by new product n at time t. Similarly, T ?jn denotes the difference in treatment

status of product j, i.e. whether it is recommended by new product n, between America and

Europe. Note that our differencing strategy is, implicitly, only relevant for products that were

exclusively recommended in either of the two regions; as a result we discard all products that

were recommended both in America and Europe. For ease of interpretation, we also recode

the variable, T ? to take the value 0 if the product was recommended in Europe but not in

America (instead of -1 as the differencing suggests).

It is easy to see that first-differencing equation 4.6 allows us to absorb the time-invariant

regional unobservables for each product j, µ?jn, that are crucial in determining the allocation

of products to different sets across regions . Further, to deal with the issue of correlated

attributes between the new and recommending product we rely on the within (new) product

regional variation in recommendation sets. We include, in the differenced equation, a fixed

effect (Bn) for each new product n that recommends different products in different regions:

∆y?jnt = β2∆(T
?
jn× Post t) +Bn+∆υ

?
jnt (4.7)

Including the fixed effect acts as a synthetic control (Abadie et al. 2010), allowing us to

compare the demand differential between product j and product k that are recommended by

the same new product n but in different regions. Our identifying assumption for the difference-

in-difference specification is that conditional on being recommended for the same product,

product j and product k experience similar trends in product sales before being recommended

by the new product.17 In section 5.6 we empirically test this common trends assumption and

show that it is validated in our data.

5 RESULTS: IMPACT OF SALIENCY ON AGGREGATE SALES

5.1 IDENTIFYING CONDITIONS

Our identification strategy rests on two assumptions that we can test empirically. First, our

strategy requires that new products produce saliency shocks for recommended products. To

show that new products are themselves highly salient, Figure 4 plots the novelty effect for

new products. The figure shows that new products are highly popular upon arrival and this

effect declines over the week. The largest effects are observed over the first four days with

the effect tapering off by the sixth day following the arrival. The figure suggests that new

17For instance, a concern could be that products chosen for recommendation in the U.S. started to experience a
higher sales trend, before being recommended, compared to a non-recommended product in Europe.
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products attract an enormous amount of consumer attention and demand immediately when

they are launched on the platform.

Second, our empirical approach relies on the fact that recommendation sets for new products

are not endogenously selected (although we relax this assumption when we exploit regional

differences in recommendation sets). To investigate this assumption in the data with regard

to observable product characteristics, Table 3 shows average prices for recommended (by new

products) and non-recommended products across the different product categories. On aver-

age, we do not find any significant differences at reasonable levels of statistical significance.

We also test whether products that are recommended by new products are subject to differ-

ent demand prior to being recommended. Figure 3 shows the empirical distribution of the

difference in shopping bag additions during a 3, 5, and 7 day time period prior to being rec-

ommended by a new product and shopping bag additions during the same time period of all

other products.18 We compute these differences comparing all products (upper graph) and

comparing only products within product categories (lower graph). The red colors show that in

the overwhelming majority of cases there are no statistical differences in demand for products

that are recommended subsequently (3, 5, or 7 days later) by a new product and all other

products. Note that while our basic results rely on this conditional independence assump-

tion, our estimations that use differences in recommendation sets across regions difference

out product-by-time unobservables.

5.2 BASELINE SPECIFICATION

For all our specifications and results, we refer to “saliency” for product j as the number of new

products recommending this product at any given point in time. Table 5 reports estimates for

the average effect of saliency on total shopping bag additions on the day it received the shock.

First we discuss estimates for the effect of a product being new. Column (1) shows that,

upon arrival, new products have on average 96% more shopping bag additions compared to

existing products. This confirms our assumption that new products are highly popular and

are likely to generate spillover effects from their popularity. We now examine the effect of

being recommended by a new product (see Table 4 for descriptive statistics). Column (1)

shows that a one unit increase in saliency, i.e. an additional new product recommendation,

increases the total number of shopping bag additions by approximately 6%. To incorporate

potential anticipation effects we include the forward lag of saliency in Column (2) and find

that our results are still robust to this addition. Further, the coefficient on the forward lag is

negative but statistically insignificant suggesting that products exposed to a saliency shock did

not experience a differential demand trend prior to receiving the saliency shock. In Column

(3) we split the saliency effect between existing products and new products. As described in

the data section, new products recommended a mix of existing and (other) new products. We

find that the effect of saliency is large and significant for existing products which see a 5.5%

18Each bar displayed in Figure 3 corresponds to the arrival date of a new product, since only the arrival of a
new product leads to the recommendation of an existing product.

14



increase in their sales on the day that they are recommended by a new product. However, this

effect is close to zero for new products receiving the saliency shock implying that the novelty

effect dominates the sales of new products upon arrival and that there are no added affects of

recommendations. Finally in Column (4) we control for the lagged effect (up to 2 weeks) of

being a new product addressing the concern that saliency shocks might be picking up lagged

new product effects if it were the case that lagged new products were likely to receive the

saliency shock. We find that our result is robust to including this control and that the saliency

effect is independent of lagged new product effects.

Until now we have focused on the immediate short term effect of a saliency shock. To assess

whether these saliency effects persist over the days following the arrival of the product, we

report results from estimating the finite distributed lag model presented in Equation 4.2.

Figure 5 plots the disaggregated saliency effects for each day following the shock along-with

their confidence intervals. The figure shows a large increase in total purchases for salient

products on the day they receive the saliency shock (6% increase) with the effect positive but

declining over the subsequent few days. On average an additional unit of saliency results in

a 3-5% increase in total purchases over the three days following the shock. Such a pattern of

effects, with a prominent spike in a product’s sales on the day that they are recommended,

is consistent with the “attention” based explanation that products receiving a saliency shock

could have been previously overlooked by consumers. The lack of persistent long-term effects

is incompatible with a selection-based explanation which posits that existing products are

endogenously selected to be part of new product recommendation sets in anticipation of their

(higher) future sales.

In figure 6 we break down the daily effects of saliency for existing and new products. The

results are mixed. Figure 6(a) shows that existing products see a large increase in their sales

on the day that they are recommended by a new product but this effect disappears on day 2,

subsequently picking up again over days 3 and 4. In contrast, we find no effect of saliency for

new products on the day they are launched and recommended by other new products (figure

6(b)) but we find positive and significant effects following the day of the shock. Our results

indicate that while the novelty feature of a new product clearly dominates its sales on the day

of its launch, the saliency effect starts to play a role in increasing its sales once the novelty

effect starts wearing off, over the subsequent few days. This means that new products that

were recommended by other new products are able to maintain a competitive edge in the

days following their launch compared to new products that are not recommended by other

new products.

Since our data also contain information on consumers’ “wishlists,” we undertake the same

analysis with total wishlist additions (per day) as a a dependent variable. Table 6 reports these

results. Although additions to wishlists are more noisy, we find strikingly similar results for

the effect of saliency. Across all specifications we find that a one unit increase in saliency, i.e.,

an additional new product recommendation, increases the total number of wishlist additions

by approximately 6%. This result is robust to controlling for lagged new product effects and
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anticipation effects. Further we find strong novelty effects with new products experiencing

almost a 118% increase in wishlist additions compared to existing products. We find close to

zero effects of saliency shocks for new products on the day they receive the shock (Columns

(3) and (4)).

Finally, Figure 13 plots coefficients when we use recommendations of complements (“how to

wear it”) instead of substitutes (“you may also like”). The results are similar to those obtained

for substitutes in Figure 6; focusing on the effect on existing products, we see a significant,

positive effect of the saliency shock on demand on the day of the saliency shock, with the effect

pattering out within the first three days. The fact that the coefficient is smaller in magnitude

than in the case of substitutes is what we would expect if most consumers choose between

substitutes rather than switching to or adding complements to their shopping bags. The effect

of the saliency shock on other new products shown in the lower plot is much more lasting, we

continue to observe a positive impact up to seven days following the shock.

5.3 ROBUSTNESS

To assess the robustness of our results to lagged novelty effects, we include the two-week lag

of whether a product was new in the baseline specification. Figures 7(a)–7(b) show that the

results, both for existing and new products, are robust to the inclusion of this control. We also

assess whether our results are sensitive to introducing differential anticipation effects between

products that received a saliency shock in the previous week compared to products that did

not. A priori, one might expect that products that received a saliency shock in the previous

week have an upward trending sales curve that makes them more likely to receive another

saliency shock. If this were the case, then we would be picking up lagged saliency effects of

high-selling products, confounding our estimates of current saliency shocks.

Figure 8(a) plots the results with the anticipation effects split between products that received

a prior saliency shock and those that did not. We see clearly that there is almost no difference

in the anticipation effects between these two types of products and that the overall effects are

close to zero. Products that received a saliency shock had no differential demand trend 3 days

prior to the event. We conduct the same analysis for total wishlist additions as a dependent

variable. Similar to the results for shopping bag additions, we find that the saliency effects for

consumers’ wishlist additions are robust to controlling for lagged new product effects (Figure

11) and differential anticipation effects (Figure 12). We conclude therefore, that our results

are not affected by including the various controls described above.

5.4 ATTENTION AND PRICE EFFECTS

We now examine heterogeneity in saliency effects across products. The first dimension of het-

erogeneity we explore is in the size of recommendation sets. For each recommended product

j, we compute the display size of the set in which product i was recommended; it equals the
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total number of other products that were also recommended alongside product j by a new

product n. The overall size of the recommendation set may matter if consumers have lim-

ited attention and can only focus on a restricted number of products at a time. As a result,

products that are recommended in smaller sets may receive more attention, increasing their

sales, compared to products recommended in larger sets. To test the display size effect, we

include an interaction of the saliency shock to product j and size of the set in which it was

recommended. Figure 9 shows results from this specification. We find substantial, negative

and significant, display size effects. An additional product in the recommendation set reduces

total purchases by 4%. To gauge the magnitude of this effect, we note that the average size of

the recommendation set in our sample is 7.5. On average, therefore, products recommended

with 7 other products see an increase in their sales by about 6%, similar to the results found

in our baseline specification. The maximum effect of saliency is experienced by products

recommended in sets of 1-3.

We now turn to exploring the price sensitivity of salient products. To examine this, we interact

the saliency shock with the difference in price between product j and the new product n

which recommends it. Our null hypothesis is that consumers are less likely to respond to

price differences if product recommendations serve only to improve the saliency of a product,

thereby drawing consumers’ attention. Figure 10 plots the results of the interactions. We fail

to reject the null for the interaction effects both on the day of the shock and subsequently. The

coefficient on the interaction terms is close to zero suggesting that consumers ignore variation

in price differences across recommended products and are influenced only by the number of

other competing products.

5.5 SPILLOVER EFFECTS OF SALIENCY

So far, we have measured the direct effect of a saliency shock on products that are recom-

mended by newly launched products. To the extent that these products also recommend

other products, there could exist substantial spillover effects of the saliency shock that poten-

tially bias our estimates downwards. To explore the presence of spillover effects, we build a

network of recommendations that allow us to vertically trace the impact of the saliency shock,

originating from newly launched products.

We measure, on a given day, the path distance between a product and a new product in the

recommendation network. For example, products that were directly recommended by a new

product have a one degree separation and are identified by the dummy variable, D1. Further,

products that are recommended by degree 1 products have a two degree separation between

themselves and the new product and are identified by the dummy variable, D2. In a similar

way we identify degree 3 products (D3). Note that the variables that identify the degree of

a product are mutually exclusive, in the sense that products are identified by their closest

degree of separation even if they can be recommended recursively through the network.
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y j t = α+
Γ
∑

λ=−τ
ψτ−λ(bs

N
j(τ−λ)× D1

j(τ−λ)) +
Γ
∑

λ=−τ
ψτ−λ(bs

N
j(τ−λ)× D2

j(τ−λ))

+
Γ
∑

λ=−τ
ψτ−λ(bs

N
jτ−λ× D3

j(τ−λ)) +µ j + γt + ε j t (5.1)

In this specification, bsN
j(τ−λ) × D1

j(τ−λ) measures the total number of new products recom-

mending product j, i.e., it represents the intensity of saliency for products that are directly

recommended by new products (degree 1). The indirect spillover effects are captured by the

variables bsN
j(τ−λ) × D2

j(τ−λ) and bsN
j(τ−λ) × D3

j(τ−λ). bs
N
j(τ−λ) × D2

j(τ−λ) measures the total number

of degree 1 products (those directly affected by the saliency shock) recommending product

j for all products at a two degree separation from any new product; bsN
j(τ−λ) × D2

j(τ−λ) mea-

sures the total number of degree 2 products (those indirectly affected by the saliency shock)

recommending product j for all products at a three degree separation from any new product.

Table 7 reports results from including spillover effects. The first row of the table presents our

baseline results, where we do not account for spillover effects. The subsequent rows report

results on both direct and indirect effects of the saliency shock. We find that our baseline

results are largely unchanged by the inclusion of the spillover variables. As expected, there

is a slight increase in the magnitude of the effect, from 7.4% to 8.2%, after accounting for

spillover effects. A comparison of the direct and indirect effects of the saliency shocks reveals

that the effects of the saliency shock are strongest for products recommended directly (at

degree 1 separation) by new products. However we also find significant (positive) spillover

effects. Products recommended by saliency-shock-affected products also see an increase in

their sales on the day that new products are launched, but to a much lesser extent (a 2%

increase). The spillover effects are limited to products at a degree 2 separation from new

products. We find no significant effects for products that are at a three degree separation

from new products.

5.6 EXPLOITING REGIONAL VARIATION IN RECOMMENDATION SETS

We have presented a range of results starting with the baseline specification and extensions in

various directions. Table 8 shows the coefficients of interest for all the different models. The

table highlights how consistent our results are across specifications – we see a large positive

coefficient between 0.74 and 0.82 on the day an existing product receives a saliency shock,

with this positive effect lasting for three days. The table also shows that these findings are

unaffected by accounting for the price difference between recommending and recommended

products. At the same time, we find that the larger the recommendation set, the smaller the

saliency effect. These results paint a consistent picture, suggesting that products that have

been available to consumers on the platform experience a large surge in demand when they
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are made more salient through a recommendation by highly salient products.

A concern with all the results presented in Table 8 is that the probability of receiving a saliency

shock has an underlying correlation with future sales. In all our results we have shown that,

on average, products receiving a saliency shock did not experience a differential demand

trend from non-saliency shock products, prior to receiving the shock. In this section, we

employ a tight and robust specification that differences out product-by-time unobservables

and allows us to consistently estimate the saliency effect. As explained in Section 4.1.2, we

exploit regional variation in the composition of recommendation sets to identify the saliency

effect.

To begin with, we conduct a simple placebo test that illustrates our identification strategy.

Figure 14 plots the results for saliency effects from our baseline specification (for existing and

new products) and additionally reports results from a counterfactual exercise built around re-

gional differences. We construct the counterfactual in the following way: we identify two sets

of products – those receiving a saliency shock in America and those receiving a saliency shock

in Europe. Next, we examine whether products that received a saliency shock exclusively in

Europe, i.e., they were recommended by a new product (which itself was launched globally)

only in Europe, increased in any way their American sales. Since consumers in America are

not able to view these products as salient in their region, we should expect no change in the

products’ American sales if there was a pure saliency/attention effect driving up sales. In-

stead, if there were underlying time varying product trends for salient products, for example

if salient products coincided with fashion trends picked up by their similarity to new products,

then our hypothesis would be rejected and our identification would stand compromised. Fig-

ure 14(c) shows that this is not the case and that products made salient exclusively in Europe

saw no change in their American demand. All effects, short-term and long-term, are close to

zero.

Having described the essence of our identification approach, we now proceed to obtaining

consistent effects for saliency using this strategy. The objective of our exercise is to estimate

treatment effects, described as whether a product is made salient in America, on the sales

differential between America and Europe. In estimating equation 4.7, we obtain estimates

that – conditional on fixed effects for each new product launched globally – are independent

of unobserved i) time-varying product differences, ii) time-invariant regional differences for

each product and iii) time-varying regional differences for each product. Before reporting

the results, we test the pre-event, unconditional difference in the America-Europe sales dif-

ferential and prices of both treatment and control products. Table 9 shows that there are no

statistically significant differences in the price and sales of treatment and control products

before the saliency shock hits. These results suggest that even without conditioning on new

product fixed effects, there are hardly any differences in the characteristics and outcomes

of treated and untreated products. In contrast we find a large and significant difference in

the post-saliency-shock sales of treatment and control products suggesting a positive saliency

effect. In addition we test the common-trends assumption, implicit in our double difference-
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in-difference strategy. Figure 15 plots the (predicted)19 difference in sales between America

and Europe on the y-axis and event time on the x-axis. In both the figure and following results

table, we undertake a within new-product comparison. This means we compare products that

receive a saliency shock in America (treatment) by a new product n with a similar product

(control) that is also recommended by n but only in Europe and not in the Americas. While

we estimate equation 4.7 over a daily time interval of {-3. +3} days, the figure is extended to

12 hour (half-day) intervals over the same sample range.20 The figure shows that both control

(plotted in gray) and treatment (plotted in black) products have a declining sales curve but

treatment products lie slightly below control products; however this difference is not statis-

tically significant. On the day that treatment products receive their shock in America, their

sales differential increases by a magnitude of almost two in favor of America. Following the

event, the product continues its declining trend but the boost in its sales on the event day puts

its sales curve on a higher level compared to control products reversing the pre-event trend

gap.

Table 10 now reports results from our double difference-in-difference strategy. All columns

condition on new product fixed effects. Column (1) estimates a simple difference-in-difference

equation and retains the base treatment effect to show that the baseline difference between

treatment and control products is statistically insignificant. In Column (2) we estimate the

double difference-in-difference equation 4.7. We find that products recommended by a new

product in America see a 13% increase in their American-Europe sales differential over the

4 event days, compared to similar products recommended exclusively in Europe by the same

new product. The magnitude of the effect is larger than the effect obtained in our baseline

specification. In column (3) we examine whether the treatment effects differ by size of the

recommendation sets. We find a 2.5% decrease in sales differential with the inclusion of an

additional product in the recommendation set. This effect is slightly smaller compared to

what we obtained in our baseline specification but given the differences in the average size of

the recommendation sets between our different samples, we conclude that the effect is largely

similar. Finally, column (4) breaks down the effect by event day. As expected, we find a large,

positive effect on the day of the event (10%) and surprisingly large effects sustained over

the days following the event. In this sample, the effect of the saliency shock is largest (17%

increase in sales differential) on the second day following the event.

6 MECHANISMS AND STRUCTURAL EFFECTS OF SALIENCY ON CONSUMER DEMAND

The reduced-form analysis has shown that a product’s saliency has a positive and significant

effect on its sales. Yet, our results from this analysis cannot distinguish whether this effect

19We use predicted difference in sales by regressing actual sales differentials on a fixed effect for each new
product recommendation set. This allows us to test the common trends assumption conditional on Bn as required
by our identification strategy.

20Note that since we require information on sales prior to the event, by construction, we are only able to examine
saliency effects for existing products.
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occurs through an increase in a consumers’ consideration for this product or through con-

sumers’ implicit preference for saliency (thereby affecting their choice). Indeed, we have

assumed that the effect of saliency on sales works through consumers’ consideration sets in

order to interpret our results as evidence for limited attention.

In this section, we verify this assumption and estimate the two-stage probabilistic choice multi-

nomial logit model (PCMNL). This approach allows us to test explicitly how saliency affects a

consumer’s consideration and choice and hence whether consumers make choices under lim-

ited attention. We also want to distinguish any such limited attention effect from consumer

preferences for saliency.

6.1 PROBABILISTIC CHOICE MULTINOMIAL LOGIT MODEL

The difficulty in the literature is distinguishing whether a product is not consumed because

it has no utility to the consumer or whether the consumer is simply unaware of it because

of scarce attention. The latter would imply that consumers do not take into account all the

alternatives available on the website in making their choices but reduce them to a smaller

(manageable) set. A consumer might be able to see all the alternatives available to her but

only evaluates a subset of them, the choice or consideration set, and makes her final choice

by maximising her preferences over this set.

This process is described by Manski (1977) in his econometric formulation of choice behaviour

that allows for sequential decisions with heterogenous choice sets. Manski (1977) proposes

random utility models of choice, where choice sets are probabilistic in nature and final choices

are conditional on this choice set. Within this class of model, we adopt the random constraint-

based approach of Swait and Ben-Akiva (1987) where a product is excluded from the choice

set if its consideration utility is lower than some threshold consideration utility level. As

described by Başar and Bhat (2004), since this threshold utility level is not observed by the

econometrician, the exclusion of a product from the choice set becomes probabilistic. Note

that in our framework, we do not explicitly model the consumer search process. In general,

consumers may face heterogenous search costs that are fixed across all products (De los Santos

et al. 2012) or vary by product (Kim et al. 2010) but our consideration stage specification is

agnostic about this. In this sense, our results for the consideration effect can be viewed as a

mixture of increasing awareness and lowering search costs. 21.

We consider the probability that alternative j is considered by consumer i at any time t, where

21Honka et al. (2014) model all three stages of a consumer’s decision process, awareness, consideration and
choice and find that advertising serves to mainly increase awareness for a product. Their data identifies the list of
options considered by the consumers during their search process.
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t represents a calender day.22 This probability can be written as:

Ci j t =
1

1+ e−(φ
′wijt+ψ′1s j t )

(6.1)

where wijt is a column vector of observed attributes for user i and alternative j at time t

and φ is a corresponding column vector of coefficients which provide the impact of attributes

on the consideration probability of alternative j. Our variable of interest, product saliency

is captured by s j t which is defined as the number of recommended sets by a new product

that product j appears in at time t of the corresponding new products’ launch. The coeffi-

cient ψ1 measures the impact of saliency on the consideration probability of alternative j. An

important identifying condition that we require for analysis is that, conditional on salience

(and other included attributes, w), the probability of consideration is independent across al-

ternatives. While slightly restrictive, we justify this assumption in our data based on the fact

that all products in each sub-category we analyse are fully substitutable. In addition, apart

from saliency, there is very little menu dependence amongst alternatives i.e, each alternative

is presented without any special distinguishing aspects. Allowing for dependence across alter-

natives in unfeasible in our context as it would yield no observable restrictions on the choice

data with which to identify the consideration set as shown by Manzini and Mariotti (2014).23

The overall probability of a choice set ct at time t for user i is given by:

Pi t(ct) =

∏

j∈ct

Ci j t
∏

k/∈ct

(1− Cikt)

1−
J
∏

j=1
(1− Ci j t)

(6.2)

Note that the denominator is normalized to remove the “empty” choice set. It is also assumed

that the randomly-distributed threshold for each alternative is independent of the threshold

values of other alternatives. Conditional on the choice set, a consumer chooses product j at

time t based on the following multinomial logit formulation, as:

Pi j t |ct =
eβ
′xijt+ψ2s j t

∑

k∈ct

eβ′xikt+ψ2skt
if j ∈ ct (6.3)

= 0 if j /∈ ct (6.4)

where xijt is a column vector of exogenous variables that affect the probability of selecting a

product conditional on a consumers choice set, β is a column vector of associated coefficients

22Implicitly we make the simplifying assumption that any user i considers purchasing only one unit of a product
per day. This is not, however a restrictive assumption, and we can easily re-write the model in terms of a user
considering to purchase a product at any given fraction of time.

23Manzini and Mariotti (2014) also show that menu dependence would lead to the preference relation being
entirely unidentified. They cite evidence, from different contexts, that support no or weak menu effects.
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and ψ2 measures the impact of saliency on the choice probability of alternative j conditional

on considering it. Given the conditional choice probability, the unconditional probability of

choice of alternative j can be written as:

Pi j t =
∑

ct∈G

(Pi j t |ct) · Pi t(ct) (6.5)

where G is the set of all non-empty subsets of the comprehensive choice set of all product

alternatives, i.e., it includes each possible choice set, a total of (2I − 1) elements where I is

the total number of products in the market. We estimate the consideration and choice stage

parameters by iterating over all possible sets and maximizing the following log-likelihood

function:

L(φ,ψ1,β,ψ2) =
∑

i

∑

j

yi j t · log Pi j t(φ,ψ1,β,ψ2) (6.6)

where yi j t is a dummy variable taking the value 1 if individual i chooses product j and 0

otherwise.

We can compute the disaggregate elasticity effects based on Başar and Bhat (2004). We define

δi j t as a an indicator for whether the choice set ct contains product j. Then, the probability,

Bi j t , that the individual’s choice set includes product alternative j is:

Bi j t =
∑

ct∈G

δ
ct
i j t Pi t(ct) =

Ci j t

1−
∏

k
(1− Cikt)

(6.7)

Now, consider the impact of attribute si t that appears both at the consideration stage and

choice stage. The overall self-elasticity (probability of choosing product j) and cross-elasticity

(probability of choosing product k) of demand, with respect to the saliency of product j is

given by (Başar and Bhat 2004):

η
Pi j t
s j t
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The first term in both expressions is the consideration probability, which captures the impact

of a change in the attribute on the consideration of product j while the second term represents

the substitution probability at the choice stage conditional on product j being available in the

choice set. The total effect of saliency depends, therefore, on the consideration probability

for product j as well as its ultimate choice probability from amongst a set of considered

alternatives.

In our setting, the probabilities of the choice set Pi t(ct) are described by the random arrival of

new products that in turn highlight (or make salient) a subset of older products, or additions

to the (unobserved) choice set. These salience shocks to the existing full set of alternatives

draw attention to the subset of existing alternatives highlighted by recommendations from

the new arrivals. These shocks are not related to consumers’ attributes, since they are not

personalised. A particular advantage of our approach is that we do not need to know the

exact choice set formulated by consumers but focus on the potential additions to the choice

set created by the increased salience of a subset of products generated by new product arrivals.

Finally note, from the cross-elasticity expressions, that the PCMNL model does not display

the Independence of Irrelevant Alternatives (IIA) feature of the multinomial/conditional logit

model. The cross-elasticities in the PCMNL model depend on the probability information

for both products j and k. This means that the cross-elasticities will be different across all

alternatives.

6.2 RESULTS: EFFECTS OF SALIENCY ON CONSUMER CONSIDERATION AND CHOICE

To estimate this model, we use transaction-level data on each consumer’s purchase. Apart

from consumer’s geographic location, we do not identify any other consumer attributes. We

thus treat the data as a pooled cross-section as our data does not track individual consumers

over time. We are nevertheless able to identify the time period over which a given consumer

visited the website and made a purchase decision. This allows us to include product level

attributes in our models that vary over time and across consumers, such as saliency and

novelty.

The reduced form analysis indicates that the effects of saliency last for a maximum of 4 days.

Taking this into account, we define the saliency variable as a dummy variable taking the value

one if the product was recommended by a new product at time t and over the 5 days following

it. We define the variable “new product” in a similar way.24

Next in order to make our computation feasible, we estimate our model on a sub-set of data,

i.e., instead of using information on the entire catalogue of products (that contains thousands

of options), we narrow down on a sub-category of products, “Travel Bags”, that contains only

24Note that although these new products are unavailable to consumers before they were launched, we still
include them in our estimation. This is un-problematic because the the inclusion of the consideration stage,
implicitly allows for some options to be irrelevant for some consumers (for example, those who visited the website
when the product was not yet launched). For a more formal result, see Crawford et al. (2015) who discuss how
the non-availability of products can be incorporated into a demand model with unobserved choice sets.
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12 options.25 For comparison, and to show that the results are not specific to the chosen prod-

uct category, we also estimate the model for the sub-category “Watches” (with 25 options),

but choosing only the 10 most purchased products that account for over 80% of sales. In

addition to computational feasibility, we choose these two categories because products within

these categories are highly substitutable.26 For all specifications, we focus only on shopping

bag additions and not on a consumer’s wish-list as the latter provides a noisy measure of a

consumer’s actual choice.

Table 11 reports estimates from the the PCMNL model for both sub-categories (travel bags

and watches). The majority of products in both sub-categories (more than 80%), receive a

saliency shock at least once and vary only in the timing of receipt. Columns (1), (3) and (5)

report coefficients from the consideration stage. We find that product saliency has a strong,

positive and significant effect on consideration. Consumers, in our context, do not appear

to be price-sensitive, but display a preference for choosing new products. While we find a

small, positive and significant effect for saliency at the choice stage (Column (2)), this ef-

fect disappears when we disaggregate it for existing and new products. Column (3) shows

that, for existing products, saliency has an insignificant effect on the probability of purchase

in the choice stage. On the other hand, consumers are less likely to choose new products

that are recommended (conditional on consideration), perhaps because they value new prod-

ucts that are more unique and less substitutable. Overall, taken together (consideration and

choice), the aggregate marginal effects for saliency indicate an average increase in sales of 3%

(travel bags)to 15%(watches) after being recommended by a new product (thereby increasing

saliency). These effects are consistent with the results obtained from the reduced form analy-

sis where we find that saliency increases product sales on average by approximately 6%. The

reason why we find a lower marginal effect for travel-bags compared to watches is because

most products in the travel bags category have a high consideration level in the market. Our

model estimates imply that the average share of consumers who consider a product within

the category travel-bags is a relatively high 78% compared to a low 49% for watches.27

Table 12 presents a sample of estimated own- and cross-price elasticities.28. Each entry j, k,

where j indexes row and k column, gives the elasticity of product j with respect to a change

in the saliency of k. Note that the products are labelled according to their sales rank (1

25For this reason, we are also unable to include product dummies in our specification. The inclusion of product
dummies (in both the consideration and choice stage) makes the likelihood highly non-convex, resulting often in
the non-convergence of our estimator. However we verify that the results from the MNL model are not sensitive
to the inclusion or non-inclusion of product dummies. Counterfactual sales shares from either specification in the
MNL are approximately the same.

26This is unlikely to occur in a category such as “clothes”, where consumers are likely to complement each choice
with other products from the same category.

27The average share is calculated as the mean of each product’s consideration share. The share of consumers

who consider a product j is given by: (1/I)

�

∑

j

∑

ct∈G
δ

ct
i j t Pi t(ct)

�

where I is the total number of consumers.

28For the elasticities and counterfactuals reported below, we choose the specification where the saliency param-
eter has not been disaggregated for new and existing products (columns (1) and (2) of Table 11) We do this to
examine the overall saliency effect, which simplifies our policy counterfactuals as well as the interpretation of the
results.
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corresponding to the top-selling product in the sub-category). Each entry reports the mean

elasticity across the 90 consumers who shopped four travel bags. The variation in estimated

elasticities (given by the ratio of the maximum to the minimum cross-price elasticity within a

column) ranges from -2 to 0. This indicates that the model has overcome the restrictive form

imposed by the multinomial logit model which produces proportional substitution elasticities

(Nevo 2000). Most cross-elasticities are negative29 indicating that recommendations generate

negative externalities, contracting the market for other products. Some cross-elasticities are

positive, indicating positive externalities. This could be a result of spillovers from the saliency

effect through cross-recommendations as documented in section 5.5. Overall, the average

change in sales for all products as a result of a change in saliency for any product j , is

negative but much smaller than own-elasticity effects.

Table 12 also allows us to investigate whether observed increases in demand for more salient

products are driven by more customers purchasing these products (extensive margin) or

whether customers substitute salient products for products that were not made more salient

within product categories (intensive margin). The estimated own- and cross-price elasticities

suggest that effects at both extensive and intensive margins are at work. For most products,

cross-elasticities are overall negative, which suggests some substitution between products that

received a saliency shock and other products which indicates effects are driven by changes at

the intensive margin. That said, a comparison between own- and cross-elasticities suggests

that for 8 out of 10 products this substitution effect is outweighed by an increase in demand

for the more salient product. In other words, the demand increase occurs also at the extensive

margin, i.e., new customers purchasing a salient product within a given product category.

6.3 COUNTERFACTUALS

Based on our model estimates, next we simulate counterfactuals to assess how sales shares

change when: (1) consumers have full, instead of limited, attention (Kim et al. 2010) and (2)

only certain types of products receive recommendations. Lewis and Wang (2013) show theo-

retically that while recommendation systems help generate a positive surplus for the platform

as a result of improved matches, the overall effect may not be Pareto improving, as market

participation may shift in favor of some products against others. We investigate this issue

empirically, by examining how different types of recommendations systems impact the sales

share of popular vs. unpopular products, when consumers have limited attention.

For the full attention case, our model reduces to a standard multinomial logit (MNL) model;

we thus use the estimated parameters from the MNL model to calculate sales shares when

consumers have full attention. To assess the performance of different recommendation sys-

tems, we define the set of “popular products” as those with an observed sales share of more

than 10% (products 1, 2 and 3). The remaining products (products 4 to 12) are categorized

as “unpopular products.” We then consider two variants of the recommendation system: i)

29Note, that the zero elasticities are a result of the fact that saliency is zero for these (column) products.
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when only popular products are (always) recommended (products 1, 2 and 3) and ii) when

only unpopular products are (always) recommended (products 4 to 12).

Figure 16 plots the results from the simulations. Each bar in the figure represents the per-

centage difference in sales share between when consumers have limited attention and when

they have full attention. A negative value indicates that the share under limited information

is lower than that under full attention. The x-axis orders products by their sales rank (1 being

most popular and 12 being least popular).

The first result is that limited attention disproportionately harms top-selling products. Popular

products suffer a loss in their sales share when consumers have limited attention under the

existing recommendation system as indicated by the dark grey bars. Intuitively, popular prod-

ucts are chosen less when consumers have limited attention because they enter less frequently

in their consideration sets. Under full attention however, they are always in a consumer’s con-

sideration set and are frequently chosen based on their superior underlying characteristics.

As the actual recommendation system does not disproportionately highlight popular products

(Table 11 reports that 10 out of 12 products in this sub-category are recommended by a new

product at least once), their share under limited information is always lower relative to the

full attention scenario.

Next, we consider a different recommendation system, whereby, all new products recommend

only popular products, namely products 1, 2 and 3. Under this scenario (medium gray bars),

we find the difference in sales share for popular products 1 and 2 is still negative but the loss

that they suffer is much lower than when all products are equally recommended. Popular

product 3 actually reverses the share differential and stands to gain by almost 2% under this

system. In contrast, some unpopular products (7, 10, 11 and 12) register a negative difference

as a result of only popular products being recommended.

Finally we plot how sales shares evolve under limited and full attention, if only unpopular

products received recommendations from new products. The light grey bars show that this

would, predictably, lead to an increase in the share of unpopular products (under limited

attention) and cause the sales share difference to increase by almost about 1.5%. Unpopular

products benefit from consumers having limited attention (relative to full attention) because

popular products will be even more overlooked under this recommendation system. Popular

products in contrast lose up to 4.5% of sales share under this setting.

7 CONCLUSION

In this paper we estimate the effect of product saliency, affected via recommendation sets,

on user choice in online markets. We find a sharp and robust 6% increase in the sales of a

product when it is recommended by a highly popular new product. This effect is however

short-lived, lasting for approximately only four days. On average the daily increase in sales

attributable to saliency is around 5%. We also find that products recommended in smaller sets
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experience larger effects of saliency as they have to compete less for user attention. Finally,

our context allows us to build a robust counterfactual to verify our results. We exploit regional

variation in recommendation sets whereby we compare regional sales of products that receive

recommendations from the same product but over different regions. We find that products

recommended by a new product in America see a 13% increase in their American-Europe sales

differential over the 4 event days, compared to similar products recommended exclusively in

Europe by the same new product. Our structural analysis confirms that the reduced form

effects of saliency on sales are the result of saliency affecting the set of products considered

by a consumer. Once we condition on the effect of saliency on the consideration set, saliency

has no effect on choice.

Our analysis sheds light on consumer choice in an environment with low search costs but

very large choice sets. Our evidence rejects the traditional revealed preference assumption

and suggests that consumers make choices consistent with revealed attention. In other words,

we find that consumers make choices under limited attention despite having easy access to

information. This results in a search friction as consumers do not consider all products avail-

able on a given online platform. However, we also show that online platforms operating in

these environments can alleviate this friction by helping refine user search by offering prod-

uct recommendations. We show that such recommendations can temporarily affect the sales

and appeal for products by shaping and expanding consumers’ consideration sets. Indeed, our

counterfactual analysis suggests that different recommendation systems can have large effects

on the demand for a given product if consumer choice is subject to limited attention.
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Figure 1: Recommendation sets
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Figure 2: Recommendation sets U.S. vs. Europe
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Figure 3: Differences in shopping bag additions between existing products recommended by
new products and all other products
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Table 3: Descriptive statistics: average prices of products recommended by new products and
non-recommended products

Price (in US$) Recommended Not recommended Difference

All 1,075.34 1,036.86 38.47

Accessories 989.08 1,045.29 -56.21
Bags 1,666.98 1,732.24 -65.25
Beauty 71.65 78.99 -7.34
Clothing 1,250.59 1,281.34 -30.75
Lingerie 258.28 222.23 -36.04**
Shoes 800.14 873.05 -72.91**

∗∗ Difference significant at 5%.

Table 4: Descriptive statistics: product recommendations by new products

# Products Recommended by If recommended
new product # recommendations

# products % Total Mean SD Max

By product recommended by new product

All 6,693 43.46 1.50 0.91 23

Accessories 1,197 52.61 1.49 0.79 8
Bags 590 50.77 1.49 0.75 6
Beauty 310 31.47 1.55 1.39 9
Clothing 3,523 42.24 1.53 0.84 8
Lingerie 240 27.71 1.98 2.30 23
Shoes 833 47.06 1.45 0.79 8

By product recommended by new product and time

All 373.57 2.95 1.27 0.68 23

Accessories 64.19 3.56 1.28 0.62 8
Bags 32.63 3.57 1.27 0.58 6
Beauty 6.98 0.75 1.44 1.26 9
Clothing 224.68 3.34 1.26 0.61 8
Lingerie 6.37 0.79 1.84 2.09 23
Shoes 38.68 2.62 1.24 0.61 8
The upper part of this table reports statistics when we consider whether an existing
product was recommended by a new product during the entire period of observation.
The lower part of the table, in contrast, reports statistics when we consider whether an
existing product was recommended by a new product on a given day during the period
of observation. The # of products recommended by new products in the lower part of
the table are therefore the average number of existing products recommended by new
products on any given day.
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Figure 4: Saliency Shock: New Product

This figure reports coefficient estimates (with 95% confidence intervals) of the effect of entry – being a new product – on the total
number of shopping bag additions (per day). The sample consists of all daily, product-level, transactions carried out between May 20,
2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. New Product is a dummy variable taking the value one is the product was introduced in the catalogue on a given
day. The regression specifications controls for time fixed effects, controls for day of the week and weekend.
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Table 5: Effects of Saliency on Total Purchases

(1) (2) (3) (4)

Saliency 0.059*** 0.057*** 0.055*** 0.054***
(0.013) (0.014) (0.016) (0.016)

Forward Lag of Saliency -0.027 -0.027 -0.029
(0.017) (0.017) (0.018)

New Product 0.967*** 0.981*** 0.980*** 0.954***
(0.040) (0.040) (0.041) (0.041)

Saliency × New Product 0.003 0.004
(0.022) (0.022)

2 Week Lag of New Product 0.069**
(0.027)

Time and Day F.E Yes Yes Yes Yes
Observations 986214 969368 969368 969368
This table reports results on the effect of the saliency shock on the total number of shopping bag additions (per
day). The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29,
2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced
panel of products over time. New Product is a dummy variable taking the value one is the product was introduced
in the catalogue on a given day. Saliency is defined as the total number of new products that recommend the
target product at any given point of time. All specifications control for time fixed effects, controls for day of the
week and weekend. Standard errors clustered by product are reported in parentheses. * indicates significance
at 10%; ** at 5%; *** at 1%.

Table 6: Effects of Saliency on Total Wishlist

(1) (2) (3) (4)

Saliency 0.056*** 0.054*** 0.063*** 0.060***
(0.011) (0.011) (0.017) (0.017)

Forward Lag of Saliency -0.005 -0.004 -0.007
(0.018) (0.018) (0.018)

New Product 1.181*** 1.187*** 1.192*** 1.130***
(0.029) (0.029) (0.030) (0.029)

Saliency × New Product -0.014 -0.010
(0.021) (0.021)

2 Week Lag of New Product 0.210***
(0.020)

Time and Day F.E Yes Yes Yes Yes
Observations 932539 915993 915993 915993
This table reports results on the effect of the saliency shock on the total number of wish-list additions (per day).
The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014.
As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. New Product is a dummy variable taking the value one is the product was introduced in the
catalogue on a given day. Saliency is defined as the total number of new products that recommend the target
product at any given point of time. All specifications control for time fixed effects, controls for day of the week
and weekend. Standard errors clustered by product are reported in parentheses. * indicates significance at
10%; ** at 5%; *** at 1%.
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Figure 5: Staggered Effects of Saliency Shocks

This figure reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day). The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a
result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of products over time. Saliency is
defined as the total number of new products that recommend the target product at any given point of time. The regression specifications
controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.



Figure 6: Staggered Effects of Saliency Shocks

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day). Figure (a) reports the effect of saliency for existing products while figure (b) reports the effect of saliency for new
products. The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a result of
the thrice-weekly introduction of new products, our database represents an unbalanced panel of products over time. Saliency is defined
as the total number of new products that recommend the target product at any given point of time. The regression specifications controls
for the entry of a new product, time fixed effects, controls for day of the week and weekend.



Figure 7: Saliency Shocks: : Controlling for Lagged Effect of New Product

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day) controlling for lagged entry effects, i.e, we include the two-week lag of whether a product was new in the specification.
Figure (a) reports the effect of saliency for existing products while figure (b) reports the effect of saliency for new products. The sample consists
of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of
new products, our database represents an unbalanced panel of products over time. Saliency is defined as the total number of new products
that recommend the target product at any given point of time. The regression specifications controls for the entry of a new product, time fixed
effects, controls for day of the week and weekend.



Figure 8: Saliency Shocks: Controlling for Differential Anticipation Effects

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day) controlling for differential anticipation effects, i.e, we split and include the anticipation effect (forward lags of saliency)
between products that received a prior saliency shock and those that did not. Figure (a) reports the effect of saliency for existing products
while figure (b) reports the effect of saliency for new products. The sample consists of all daily, product-level, transactions carried out between
May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. Saliency is defined as the total number of new products that recommend the target product at any given point of time. The
regression specifications controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.



Figure 9: Saliency Shocks: Attention Effects

This figure reports coefficient estimates (with 95% confidence intervals) of the effect of saliency and its interaction with ‘attention’ (size of set)
on the total number of shopping bag additions (per day). The sample consists of all daily, product-level, transactions carried out between
May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. Saliency is defined as the total number of new products that recommend the target product at any given point of time. Our
proxy for attention, the size of the set is defined as the average size of new product recommendation sets that include the target product. The
regression specifications controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.

Figure 10: Saliency Shocks: Price Effects

This figure reports coefficient estimates (with 95% confidence intervals) of the effect of saliency and its interaction with the price of the product
on the total number of shopping bag additions (per day). The sample consists of all daily, product-level, transactions carried out between
May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of
products over time. Saliency is defined as the total number of new products that recommend the target product at any given point of time. Price
is the retail price of the product in US dollars. The regression specifications controls for the entry of a new product, time fixed effects, controls
for day of the week and weekend.



Figure 11: Saliency Shocks: Wishlist with Controls for Lagged New Product Effects

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of wish-list additions
(per day) controlling for lagged entry effects, i.e, we include the two-week lag of whether a product was new in the specification. Figure (a)
reports the effect of saliency for existing products while figure (b) reports the effect of saliency for new products. The sample consists of all daily,
product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products,
our database represents an unbalanced panel of products over time. Saliency is defined as the total number of new products that recommend
the target product at any given point of time. The regression specifications controls for the entry of a new product, time fixed effects, controls
for day of the week and weekend.



Figure 12: Saliency Shocks: Wishlist with Control for Differential Anticipation Effects

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of wish-list additions
(per day) controlling for differential anticipation effects, i.e, we split and include the anticipation effect (forward lags of saliency) between
products that received a prior saliency shock and those that did not. Figure (a) reports the effect of saliency for existing products while figure
(b) reports the effect of saliency for new products. The sample consists of all daily, product-level, transactions carried out between May 20,
2014 to July 29, 2014. As a result of the thrice-weekly introduction of new products, our database represents an unbalanced panel of products
over time. Saliency is defined as the total number of new products that recommend the target product at any given point of time. The regression
specifications controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.



Figure 13: Staggered Effects of Saliency Shocks for Complementary Products

(a) Saliency

(b) New Product × Saliency

These figures reports coefficient estimates (with 95% confidence intervals) of the effect of saliency on the total number of shopping bag
additions (per day). Figure (a) reports the effect of saliency for existing products while figure (b) reports the effect of saliency for new products.
The sample consists of all daily, product-level, transactions carried out between May 20, 2014 to July 29, 2014. As a result of the thrice-weekly
introduction of new products, our database represents an unbalanced panel of products over time. Saliency is defined as the total number of
new products that recommend the target product as complimentary at any given point of time under the heading. The regression specifications
controls for the entry of a new product, time fixed effects, controls for day of the week and weekend.
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Figure 14: Saliency Shocks: Placebo

(a) Saliency America

(b) Saliency America × New Product America

(c) Saliency Europe × No Saliency America



Table 9: Differences between treatment and control products

Treatment Control Difference t-statistic

Pre-Event:
Price (in US$) 1,062.20 1,092.67 30.47 0.5283
US-EUR Diff in Purchase -0.001 0.012 0.013 0.5283

Post-Event:
US-EUR Diff in Purchase -0.050 -0.162 -0.111*** -3.3013

Observations 1296 1773

∗ ∗ ∗ Difference significant at 1%.

Figure 15: Double Diff-in-Diff: Common Trends



Table 10: Effects of Saliency on Difference in Demand b/w America and EUR

(1) (2) (3) (4)

Treatment 0.017 0.017 0.000
(0.029) (0.029) (0.029)

Post 0.000 0.155 0.169
(0.000) (0.102) (0.108)

Treatment × Post 0.079** 0.079* 0.244**
(0.038) (0.040) (0.118)

Treatment × Post × Size of Set -0.012*
(0.007)

Post (Day 0) 0.060
(0.043)

Post (Day 1) 0.075
(0.058)

Post (Day 2) 0.127***
(0.049)

Post (Day 3) 0.052
(0.052)

Controls for product ‘age’ Yes Yes Yes Yes
New Product (Block) F.E. Yes Yes Yes Yes
New Product (Block) × Post F.E. Yes Yes Yes Yes
Product F.E. No Yes No Yes

Observations 7161 7161 7161 7161
This table reports results on the effect of the saliency shock on the difference in toal shopping bag additions (per day),
between America and Europe. The sample consists of a subset of, products that are recommended exclusively in the two
regions, America and Europe. For this sample of product the specification estimates a double difference-in-difference equa-
tion for the sample’s daily transactions over a (-3,+3) event window. Treatment is a dummy variable that takes the value 1
if the product was recommended in America but not in Europe. Post a dummy variable indicating the post-event window
(0,+3). Our proxy for attention, the size of the set is defined as the average size of new product recommendation sets that
include the target product. Age of the product is the number of days since the product was released in the catalogue for sale.
Standard errors clustered by product are reported in parentheses. * indicates significance at 10%; ** at 5%; *** at 1%.
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